scispace - formally typeset
Search or ask a question
Institution

University of Tennessee Health Science Center

EducationMemphis, Tennessee, United States
About: University of Tennessee Health Science Center is a education organization based out in Memphis, Tennessee, United States. It is known for research contribution in the topics: Population & Transplantation. The organization has 15716 authors who have published 26884 publications receiving 1176697 citations.


Papers
More filters
Journal ArticleDOI
Daniel J. Klionsky1, Kotb Abdelmohsen2, Akihisa Abe3, Joynal Abedin4  +2519 moreInstitutions (695)
TL;DR: In this paper, the authors present a set of guidelines for the selection and interpretation of methods for use by investigators who aim to examine macro-autophagy and related processes, as well as for reviewers who need to provide realistic and reasonable critiques of papers that are focused on these processes.
Abstract: In 2008 we published the first set of guidelines for standardizing research in autophagy. Since then, research on this topic has continued to accelerate, and many new scientists have entered the field. Our knowledge base and relevant new technologies have also been expanding. Accordingly, it is important to update these guidelines for monitoring autophagy in different organisms. Various reviews have described the range of assays that have been used for this purpose. Nevertheless, there continues to be confusion regarding acceptable methods to measure autophagy, especially in multicellular eukaryotes. For example, a key point that needs to be emphasized is that there is a difference between measurements that monitor the numbers or volume of autophagic elements (e.g., autophagosomes or autolysosomes) at any stage of the autophagic process versus those that measure flux through the autophagy pathway (i.e., the complete process including the amount and rate of cargo sequestered and degraded). In particular, a block in macroautophagy that results in autophagosome accumulation must be differentiated from stimuli that increase autophagic activity, defined as increased autophagy induction coupled with increased delivery to, and degradation within, lysosomes (in most higher eukaryotes and some protists such as Dictyostelium) or the vacuole (in plants and fungi). In other words, it is especially important that investigators new to the field understand that the appearance of more autophagosomes does not necessarily equate with more autophagy. In fact, in many cases, autophagosomes accumulate because of a block in trafficking to lysosomes without a concomitant change in autophagosome biogenesis, whereas an increase in autolysosomes may reflect a reduction in degradative activity. It is worth emphasizing here that lysosomal digestion is a stage of autophagy and evaluating its competence is a crucial part of the evaluation of autophagic flux, or complete autophagy. Here, we present a set of guidelines for the selection and interpretation of methods for use by investigators who aim to examine macroautophagy and related processes, as well as for reviewers who need to provide realistic and reasonable critiques of papers that are focused on these processes. These guidelines are not meant to be a formulaic set of rules, because the appropriate assays depend in part on the question being asked and the system being used. In addition, we emphasize that no individual assay is guaranteed to be the most appropriate one in every situation, and we strongly recommend the use of multiple assays to monitor autophagy. Along these lines, because of the potential for pleiotropic effects due to blocking autophagy through genetic manipulation, it is imperative to target by gene knockout or RNA interference more than one autophagy-related protein. In addition, some individual Atg proteins, or groups of proteins, are involved in other cellular pathways implying that not all Atg proteins can be used as a specific marker for an autophagic process. In these guidelines, we consider these various methods of assessing autophagy and what information can, or cannot, be obtained from them. Finally, by discussing the merits and limits of particular assays, we hope to encourage technical innovation in the field.

5,187 citations

Journal ArticleDOI
TL;DR: The results support the reliability and psychometric (as well as clinical) validity of the Female Sexual Function Index (FSFI) in the assessment of key dimensions of female sexual function in clinical and nonclinical samples and suggest important gender differences in the patterning of femaleSexual function in comparison with similar questionnaire studies in males.
Abstract: This article presents the development of a brief, self-report measure of female sexual function. Initial face validity testing of questionnaire items, identified by an expert panel, was followed by a study aimed at further refining the questionnaire. It was administered to 131 normal controls and 128 age-matched subjects with female sexual arousal disorder (FSAD) at five research centers. Based on clinical interpretations of a principal components analysis, a 6- domain structure was identified, which included desire, subjective arousal, lubrication, orgasm, satisfaction, and pain. Overall test-retest reliability coefficients were high for each of the individual domains (r=0.79 to 0.86) and a high degree of internal consistency was observed (Cronbach’s alpha values of 0.82 and higher) Good construct validity was demonstrated by highly significant mean difference scores between the FSAD and control groups for each of the domains (p<0.001). Additionally, divergent validity with a scale of marital satisfactio...

5,183 citations

Book
15 Jan 1994
TL;DR: Physiology of the Gastrointestinal Tract, Fifth Edition - winner of a 2013 Highly Commended BMA Medical Book Award for Internal Medicine - covers the study of the mechanical, physical, and biochemical functions of the GI Tract while linking the clinical disease or disorder, bridging the gap between clinical and laboratory medicine.
Abstract: Physiology of the Gastrointestinal Tract, Fifth Edition - winner of a 2013 Highly Commended BMA Medical Book Award for Internal Medicine - covers the study of the mechanical, physical, and biochemical functions of the GI Tract while linking the clinical disease or disorder, bridging the gap between clinical and laboratory medicine. The gastrointestinal system is responsible for the breakdown and absorption of various foods and liquids needed to sustain life. Other diseases and disorders treated by clinicians in this area include: food allergies, constipation, chronic liver disease and cirrhosis, gallstones, gastritis, GERD, hemorrhoids, IBS, lactose intolerance, pancreatic, appendicitis, celiac disease, Crohn's disease, peptic ulcer, stomach ulcer, viral hepatitis, colorectal cancer and liver transplants. The new edition is a highly referenced and useful resource for gastroenterologists, physiologists, internists, professional researchers, and instructors teaching courses for clinical and research students. *2013 Highly Commended BMA Medical Book Award for Internal Medicine* Discusses the multiple processes governing gastrointestinal function* Each section edited by preeminent scientist in the field* Updated, four-color illustrations

4,425 citations

Journal ArticleDOI
TL;DR: In this article, the most appropriate targets for systolic blood pressure to reduce cardiovascular morbidity and mortality among persons without diabetes remain uncertain, and the authors propose a target of less than 120 mm Hg.
Abstract: BACKGROUND The most appropriate targets for systolic blood pressure to reduce cardiovascular morbidity and mortality among persons without diabetes remain uncertain. METHODS We randomly assigned 9361 persons with a systolic blood pressure of 130 mm Hg or higher and an increased cardiovascular risk, but without diabetes, to a systolic blood-pressure target of less than 120 mm Hg (intensive treatment) or a target of less than 140 mm Hg (standard treatment). The primary composite outcome was myocardial infarction, other acute coronary syndromes, stroke, heart failure, or death from cardiovascular causes. RESULTS At 1 year, the mean systolic blood pressure was 121.4 mm Hg in the intensive-treatment group and 136.2 mm Hg in the standard-treatment group. The intervention was stopped early after a median follow-up of 3.26 years owing to a significantly lower rate of the primary composite outcome in the intensive-treatment group than in the standard-treatment group (1.65% per year vs. 2.19% per year; hazard ratio with intensive treatment, 0.75; 95% confidence interval [CI], 0.64 to 0.89; P<0.001). All-cause mortality was also significantly lower in the intensive-treatment group (hazard ratio, 0.73; 95% CI, 0.60 to 0.90; P=0.003). Rates of serious adverse events of hypotension, syncope, electrolyte abnormalities, and acute kidney injury or failure, but not of injurious falls, were higher in the intensive-treatment group than in the standard-treatment group. CONCLUSIONS Among patients at high risk for cardiovascular events but without diabetes, targeting a systolic blood pressure of less than 120 mm Hg, as compared with less than 140 mm Hg, resulted in lower rates of fatal and nonfatal major cardiovascular events and death from any cause, although significantly higher rates of some adverse events were observed in the intensive-treatment group. (Funded by the National Institutes of Health; ClinicalTrials.gov number, NCT01206062.).

4,125 citations

Journal ArticleDOI
Gerald A. Tuskan1, Gerald A. Tuskan2, Stephen P. DiFazio3, Stephen P. DiFazio2, Stefan Jansson4, Joerg Bohlmann5, Igor V. Grigoriev6, Uffe Hellsten6, Nicholas H. Putnam6, Steven G. Ralph5, Stephane Rombauts7, Asaf Salamov6, Jacquie Schein, Lieven Sterck7, Andrea Aerts6, Rishikeshi Bhalerao4, Rishikesh P. Bhalerao8, Damien Blaudez9, Wout Boerjan7, Annick Brun9, Amy M. Brunner10, Victor Busov11, Malcolm M. Campbell12, John E. Carlson13, Michel Chalot9, Jarrod Chapman6, G.-L. Chen2, Dawn Cooper5, Pedro M. Coutinho14, Jérémy Couturier9, Sarah F. Covert15, Quentin C. B. Cronk5, R. Cunningham2, John M. Davis16, Sven Degroeve7, Annabelle Déjardin9, Claude W. dePamphilis13, John C. Detter6, Bill Dirks17, Inna Dubchak6, Inna Dubchak18, Sébastien Duplessis9, Jürgen Ehlting5, Brian E. Ellis5, Karla C Gendler19, David Goodstein6, Michael Gribskov20, Jane Grimwood21, Andrew Groover22, Lee E. Gunter2, Björn Hamberger5, Berthold Heinze, Yrjö Helariutta23, Yrjö Helariutta24, Yrjö Helariutta8, Bernard Henrissat14, D. Holligan15, Robert A. Holt, Wenyu Huang6, N. Islam-Faridi22, Steven J.M. Jones, M. Jones-Rhoades25, Richard A. Jorgensen19, Chandrashekhar P. Joshi11, Jaakko Kangasjärvi23, Jan Karlsson4, Colin T. Kelleher5, Robert Kirkpatrick, Matias Kirst16, Annegret Kohler9, Udaya C. Kalluri2, Frank W. Larimer2, Jim Leebens-Mack15, Jean-Charles Leplé9, Philip F. LoCascio2, Y. Lou6, Susan Lucas6, Francis Martin9, Barbara Montanini9, Carolyn A. Napoli19, David R. Nelson26, C D Nelson22, Kaisa Nieminen23, Ove Nilsson8, V. Pereda9, Gary F. Peter16, Ryan N. Philippe5, Gilles Pilate9, Alexander Poliakov18, J. Razumovskaya2, Paul G. Richardson6, Cécile Rinaldi9, Kermit Ritland5, Pierre Rouzé7, D. Ryaboy18, Jeremy Schmutz21, J. Schrader27, Bo Segerman4, H. Shin, Asim Siddiqui, Fredrik Sterky, Astrid Terry6, Chung-Jui Tsai11, Edward C. Uberbacher2, Per Unneberg, Jorma Vahala23, Kerr Wall13, Susan R. Wessler15, Guojun Yang15, T. Yin2, Carl J. Douglas5, Marco A. Marra, Göran Sandberg8, Y. Van de Peer7, Daniel S. Rokhsar17, Daniel S. Rokhsar6 
15 Sep 2006-Science
TL;DR: The draft genome of the black cottonwood tree, Populus trichocarpa, has been reported in this paper, with more than 45,000 putative protein-coding genes identified.
Abstract: We report the draft genome of the black cottonwood tree, Populus trichocarpa. Integration of shotgun sequence assembly with genetic mapping enabled chromosome-scale reconstruction of the genome. More than 45,000 putative protein-coding genes were identified. Analysis of the assembled genome revealed a whole-genome duplication event; about 8000 pairs of duplicated genes from that event survived in the Populus genome. A second, older duplication event is indistinguishably coincident with the divergence of the Populus and Arabidopsis lineages. Nucleotide substitution, tandem gene duplication, and gross chromosomal rearrangement appear to proceed substantially more slowly in Populus than in Arabidopsis. Populus has more protein-coding genes than Arabidopsis, ranging on average from 1.4 to 1.6 putative Populus homologs for each Arabidopsis gene. However, the relative frequency of protein domains in the two genomes is similar. Overrepresented exceptions in Populus include genes associated with lignocellulosic wall biosynthesis, meristem development, disease resistance, and metabolite transport.

4,025 citations


Authors

Showing all 15827 results

NameH-indexPapersCitations
George P. Chrousos1691612120752
Steven N. Blair165879132929
Bruce L. Miller1631153115975
Ralph A. DeFronzo160759132993
Frank J. Gonzalez160114496971
Robert G. Webster15884390776
Anne B. Newman15090299255
Ching-Hon Pui14580572146
Barton F. Haynes14491179014
Yoshihiro Kawaoka13988375087
Seth M. Steinberg13793680148
Richard J. Johnson13788072201
Kristine Yaffe13679472250
Leslie L. Robison13185464373
Gerardo Heiss12862369393
Network Information
Related Institutions (5)
University of Alabama at Birmingham
86.7K papers, 3.9M citations

97% related

Baylor College of Medicine
94.8K papers, 5M citations

97% related

Johns Hopkins University School of Medicine
79.2K papers, 4.7M citations

97% related

University of Texas Southwestern Medical Center
75.2K papers, 4.4M citations

96% related

University of California, San Francisco
186.2K papers, 12M citations

96% related

Performance
Metrics
No. of papers from the Institution in previous years
YearPapers
202338
2022194
20211,699
20201,503
20191,401
20181,292