scispace - formally typeset
Search or ask a question
Institution

University of Texas at Arlington

EducationArlington, Texas, United States
About: University of Texas at Arlington is a education organization based out in Arlington, Texas, United States. It is known for research contribution in the topics: Population & Large Hadron Collider. The organization has 11758 authors who have published 28598 publications receiving 801626 citations. The organization is also known as: UT Arlington & University of Texas-Arlington.


Papers
More filters
Journal ArticleDOI
TL;DR: In this paper, the most frequently cited empirical strategy studies published between 1980 and 1988 are identified and analyzed, and the results of this analysis indicate how researchers have approached the phenomenon of industry effects in the conduct of strategic management research.

568 citations

Journal ArticleDOI
TL;DR: It is demonstrated that consumers understand the value difference between favorable news and unfavorable news and respond accordingly, and the impact of online reviews on sales diminishes over time, suggesting that firms need not provide incentives for customers to write reviews beyond a certain time period after products have been released.
Abstract: Online product reviews provided by consumers who previously purchased products have become a major information source for consumers and marketers regarding product quality. This study extends previous research by conducting a more compelling test of the effect of online reviews on sales. In particular, we consider both quantitative and qualitative aspects of online reviews, such as reviewer quality, reviewer exposure, product coverage, and temporal effects. Using transaction cost economics and uncertainty reduction theories, this study adopts a portfolio approach to assess the effectiveness of the online review market. We show that consumers understand the value difference between favorable news and unfavorable news and respond accordingly. Furthermore, when consumers read online reviews, they pay attention not only to review scores but to other contextual information such as a reviewer's reputation and reviewer exposure. The market responds more favorably to reviews written by reviewers with better reputation and higher exposure. Finally, we demonstrate that the impact of online reviews on sales diminishes over time. This suggests that firms need not provide incentives for customers to write reviews beyond a certain time period after products have been released.

559 citations

Journal ArticleDOI
01 Oct 2009
TL;DR: The existence of a J-shaped distribution is demonstrated, sources of bias that cause this distribution are identified, ways to overcome these biases are proposed, and it is shown that overcoming these biases helps product review systems better predict future product sales.
Abstract: Introduction While product review systems that collect and disseminate opinions about products from recent buyers (Table 1) are valuable forms of word-of-mouth communication, evidence suggests that they are overwhelmingly positive. Kadet notes that most products receive almost five stars. Chevalier and Mayzlin also show that book reviews on Amazon and Barnes & Noble are overwhelmingly positive. Is this because all products are simply outstanding? However, a graphical representation of product reviews reveals a J-shaped distribution (Figure 1) with mostly 5-star ratings, some 1-star ratings, and hardly any ratings in between. What explains this J-shaped distribution? If products are indeed outstanding, why do we also see many 1-star ratings? Why aren't there any product ratings in between? Is it because there are no "average" products? Or, is it because there are biases in product review systems? If so, how can we overcome them? The J-shaped distribution also creates some fundamental statistical problems. Conventional wisdom assumes that the average of the product ratings is a sufficient proxy of product quality and product sales. Many studies used the average of product ratings to predict sales. However, these studies showed inconsistent results: some found product reviews to influence product sales, while others did not. The average is statistically meaningful only when it is based on a unimodal distribution, or when it is based on a symmetric bimodal distribution. However, since product review systems have an asymmetric bimodal (J-shaped) distribution, the average is a poor proxy of product quality. This report aims to first demonstrate the existence of a J-shaped distribution, second to identify the sources of bias that cause the J-shaped distribution, third to propose ways to overcome these biases, and finally to show that overcoming these biases helps product review systems better predict future product sales. We tested the distribution of product ratings for three product categories (books, DVDs, videos) with data from Amazon collected between February--July 2005: 78%, 73%, and 72% of the product ratings for books, DVDs, and videos are greater or equal to four stars (Figure 1), confirming our proposition that product reviews are overwhelmingly positive. Figure 1 (left graph) shows a J-shaped distribution of all products. This contradicts the law of "large numbers" that would imply a normal distribution. Figure 1 (middle graph) shows the distribution of three randomly-selected products in each category with over 2,000 reviews. The results show that these reviews still have a J-shaped distribution, implying that the J-shaped distribution is not due to a "small number" problem. Figure 1 (right graph) shows that even products with a median average review (around 3-stars) follow the same pattern.

551 citations

Journal ArticleDOI
TL;DR: This paper presents three design techniques for cooperative control of multiagent systems on directed graphs, namely, Lyapunov design, neural adaptive design, and linear quadratic regulator (LQR)-based optimal design.
Abstract: This paper presents three design techniques for cooperative control of multiagent systems on directed graphs, namely, Lyapunov design, neural adaptive design, and linear quadratic regulator (LQR)-based optimal design. Using a carefully constructed Lyapunov equation for digraphs, it is shown that many results of cooperative control on undirected graphs or balanced digraphs can be extended to strongly connected digraphs. Neural adaptive control technique is adopted to solve the cooperative tracking problems of networked nonlinear systems with unknown dynamics and disturbances. Results for both first-order and high-order nonlinear systems are given. Two examples, i.e., cooperative tracking control of coupled Lagrangian systems and modified FitzHugh-Nagumo models, justify the feasibility of the proposed neural adaptive control technique. For cooperative tracking control of the general linear systems, which include integrator dynamics as special cases, it is shown that the control gain design can be decoupled from the topology of the graphs, by using the LQR-based optimal control technique. Moreover, the synchronization region is unbounded, which is a desired property of the controller. The proposed optimal control method is applied to cooperative tracking control of two-mass-spring systems, which are well-known models for vibration in many mechanical systems.

550 citations

Posted Content
TL;DR: DropEdge is a general skill that can be equipped with many other backbone models (e.g. GCN, ResGCN, GraphSAGE, and JKNet) for enhanced performance and consistently improves the performance on a variety of both shallow and deep GCNs.
Abstract: \emph{Over-fitting} and \emph{over-smoothing} are two main obstacles of developing deep Graph Convolutional Networks (GCNs) for node classification. In particular, over-fitting weakens the generalization ability on small dataset, while over-smoothing impedes model training by isolating output representations from the input features with the increase in network depth. This paper proposes DropEdge, a novel and flexible technique to alleviate both issues. At its core, DropEdge randomly removes a certain number of edges from the input graph at each training epoch, acting like a data augmenter and also a message passing reducer. Furthermore, we theoretically demonstrate that DropEdge either reduces the convergence speed of over-smoothing or relieves the information loss caused by it. More importantly, our DropEdge is a general skill that can be equipped with many other backbone models (e.g. GCN, ResGCN, GraphSAGE, and JKNet) for enhanced performance. Extensive experiments on several benchmarks verify that DropEdge consistently improves the performance on a variety of both shallow and deep GCNs. The effect of DropEdge on preventing over-smoothing is empirically visualized and validated as well. Codes are released on~\url{this https URL}.

550 citations


Authors

Showing all 11918 results

NameH-indexPapersCitations
Zhong Lin Wang2452529259003
Hyun-Chul Kim1764076183227
David H. Adams1551613117783
Andrew White1491494113874
Kaushik De1391625102058
Steven F. Maier13458860382
Andrew Brandt132124694676
Amir Farbin131112583388
Evangelos Gazis131114784159
Lee Sawyer130134088419
Fernando Barreiro130108283413
Stavros Maltezos12994379654
Elizabeth Gallas129115785027
Francois Vazeille12995279800
Sotirios Vlachos12878977317
Network Information
Related Institutions (5)
Georgia Institute of Technology
119K papers, 4.6M citations

95% related

University of Maryland, College Park
155.9K papers, 7.2M citations

95% related

Pennsylvania State University
196.8K papers, 8.3M citations

95% related

University of Illinois at Urbana–Champaign
225.1K papers, 10.1M citations

94% related

University of Texas at Austin
206.2K papers, 9M citations

94% related

Performance
Metrics
No. of papers from the Institution in previous years
YearPapers
202353
2022243
20211,722
20201,664
20191,493
20181,462