scispace - formally typeset
Search or ask a question
Institution

University of Texas at Austin

EducationAustin, Texas, United States
About: University of Texas at Austin is a education organization based out in Austin, Texas, United States. It is known for research contribution in the topics: Population & Poison control. The organization has 94352 authors who have published 206297 publications receiving 9070052 citations. The organization is also known as: UT-Austin & UT Austin.


Papers
More filters
Journal ArticleDOI
TL;DR: A review of previous research yields four key issues that form the core of a theory of hybrid arrangements as mentioned in this paper, which is then used to generate researchable propositions that explore differences among types of hybrids and to offer insights for managers of hybrid organizations.
Abstract: Hybrid organizational arrangements, in which two or more sovereign organizations combine to pursue common interests, raise significant questions for both scholars and managers. A review of previous research yields four key issues—breadth of purpose, boundary determination, value creation, and stability mechanisms—that form the core of a theory of hybrid arrangements. This theory is then used to generate researchable propositions that explore differences among types of hybrids and to offer insights for managers of hybrid organizations.

1,135 citations

Journal ArticleDOI
05 Mar 2010-Science
TL;DR: Records of the global stratigraphy across this boundary are synthesized to assess the proposed causes of the Cretaceous-Paleogene boundary and conclude that the Chicxulub impact triggered the mass extinction.
Abstract: The Cretaceous-Paleogene boundary similar to 65.5 million years ago marks one of the three largest mass extinctions in the past 500 million years. The extinction event coincided with a large asteroid impact at Chicxulub, Mexico, and occurred within the time of Deccan flood basalt volcanism in India. Here, we synthesize records of the global stratigraphy across this boundary to assess the proposed causes of the mass extinction. Notably, a single ejecta-rich deposit compositionally linked to the Chicxulub impact is globally distributed at the Cretaceous-Paleogene boundary. The temporal match between the ejecta layer and the onset of the extinctions and the agreement of ecological patterns in the fossil record with modeled environmental perturbations (for example, darkness and cooling) lead us to conclude that the Chicxulub impact triggered the mass extinction.

1,135 citations

Journal ArticleDOI
TL;DR: In this paper, a theory of human behavior in 3 × 3 symmetric games was developed and tested, and the experimental evidence rejected the rational expectations type but confirmed the boundedly rational theory.

1,135 citations

Journal ArticleDOI
Brian Yanny1, Constance M. Rockosi2, Heidi Jo Newberg3, Gillian R. Knapp4, Jennifer K. Adelman-McCarthy1, Bonnie Alcorn1, S. Allam1, Carlos Allende Prieto5, Carlos Allende Prieto6, Deokkeun An7, K. S. J. Anderson8, K. S. J. Anderson9, Scott F. Anderson10, Coryn A. L. Bailer-Jones11, Steve Bastian1, Timothy C. Beers12, Eric F. Bell11, Vasily Belokurov13, Dmitry Bizyaev8, Norm Blythe8, John J. Bochanski10, William N. Boroski1, Jarle Brinchmann14, J. Brinkmann8, Howard Brewington8, Larry N. Carey10, Kyle M. Cudworth15, Michael L. Evans10, Nick Evans13, Evalyn Gates15, Boris T. Gänsicke16, Bruce Gillespie8, G. F. Gilmore13, Ada Nebot Gomez-Moran, Eva K. Grebel17, Jim Greenwell10, James E. Gunn4, Cathy Jordan8, Wendell Jordan8, Paul Harding18, Hugh C. Harris, John S. Hendry1, Diana Holder8, Inese I. Ivans4, Željko Ivezić10, Sebastian Jester11, Jennifer A. Johnson7, Stephen M. Kent1, S. J. Kleinman8, Alexei Y. Kniazev11, Jurek Krzesinski8, Richard G. Kron15, Nikolay Kuropatkin1, Svetlana Lebedeva1, Young Sun Lee12, R. French Leger1, Sébastien Lépine19, Steve Levine, Huan Lin1, Dan Long8, Craig P. Loomis4, Robert H. Lupton4, O. Malanushenko8, Viktor Malanushenko8, Bruce Margon2, David Martínez-Delgado11, P. M. McGehee20, Dave Monet, Heather L. Morrison18, Jeffrey A. Munn, Eric H. Neilsen1, Atsuko Nitta8, John E. Norris21, Daniel Oravetz8, Russell Owen10, Nikhil Padmanabhan22, Kaike Pan8, R. S. Peterson1, Jeffrey R. Pier, Jared Platson1, Paola Re Fiorentin23, Paola Re Fiorentin11, Gordon T. Richards24, Hans-Walter Rix11, David J. Schlegel22, Donald P. Schneider25, Matthias R. Schreiber26, Axel Schwope, Valena C. Sibley1, Audrey Simmons8, Stephanie A. Snedden8, J. Allyn Smith27, Larry Stark10, Fritz Stauffer8, Matthias Steinmetz, Christopher Stoughton1, Mark SubbaRao28, Mark SubbaRao15, Alexander S. Szalay29, Paula Szkody10, Aniruddha R. Thakar29, Sivarani Thirupathi12, Douglas L. Tucker1, A. Uomoto30, Daniel E. Vanden Berk25, S. Vidrih17, Yogesh Wadadekar31, Yogesh Wadadekar4, S. Watters8, R. Wilhelm32, Rosemary F. G. Wyse29, Jean Yarger8, Daniel B. Zucker13 
TL;DR: The Sloan Extension for Galactic Understanding and Exploration (SEGUE) Survey as mentioned in this paper obtained approximately 240,000 moderate-resolution spectra from 3900 to 9000 of fainter Milky Way stars (14.0 10 per resolution element).
Abstract: The Sloan Extension for Galactic Understanding and Exploration (SEGUE) Survey obtained {approx}240,000 moderate-resolution (R {approx} 1800) spectra from 3900 {angstrom} to 9000 {angstrom} of fainter Milky Way stars (14.0 10 per resolution element, stellar atmospheric parameters are estimated, including metallicity, surface gravity, and effective temperature. SEGUE obtained 3500 deg{sup 2} of additional ugriz imaging (primarily at low Galactic latitudes) providing precise multicolor photometry ({sigma}(g, r, i) {approx} 2%), ({sigma}(u, z) {approx} 3%) and astrometry ({approx}0.1) for spectroscopic target selection. The stellar spectra, imaging data, and derived parameter catalogs for this survey are publicly available as part of Sloan Digital Sky Survey Data Release 7.

1,133 citations

Journal ArticleDOI
TL;DR: It is argued here that in universes that do not recollapse, the only bound on the cosmological constantlambda is that it should not be so large as to prevent the formation of gravitationally bound states, and it turns out that the bound is quite large.
Abstract: In recent cosmological models, there is an "anthropic" upper bound on the cosmological constant $\ensuremath{\Lambda}$. It is argued here that in universes that do not recollapse, the only such bound on $\ensuremath{\Lambda}$ is that it should not be so large as to prevent the formation of gravitationally bound states. It turns out that the bound is quite large. A cosmological constant that is within 1 or 2 orders of magnitude of its upper bound would help with the missing-mass and age problems, but may be ruled out by galaxy number counts. If so, we may conclude that anthropic considerations do not explain the smallness of the cosmological constant.

1,132 citations


Authors

Showing all 95138 results

NameH-indexPapersCitations
George M. Whitesides2401739269833
Eugene Braunwald2301711264576
Yi Chen2174342293080
Robert J. Lefkowitz214860147995
Joseph L. Goldstein207556149527
Eric N. Olson206814144586
Hagop M. Kantarjian2043708210208
Rakesh K. Jain2001467177727
Francis S. Collins196743250787
Gordon B. Mills1871273186451
Scott M. Grundy187841231821
Michael S. Brown185422123723
Eric Boerwinkle1831321170971
Aaron R. Folsom1811118134044
Jiaguo Yu178730113300
Network Information
Related Institutions (5)
Stanford University
320.3K papers, 21.8M citations

97% related

Columbia University
224K papers, 12.8M citations

96% related

University of California, San Diego
204.5K papers, 12.3M citations

96% related

University of Michigan
342.3K papers, 17.6M citations

96% related

University of Washington
305.5K papers, 17.7M citations

95% related

Performance
Metrics
No. of papers from the Institution in previous years
YearPapers
2023304
20221,209
202110,137
202010,331
20199,727
20188,973