scispace - formally typeset
Search or ask a question
Institution

University of Texas at Austin

EducationAustin, Texas, United States
About: University of Texas at Austin is a education organization based out in Austin, Texas, United States. It is known for research contribution in the topics: Population & Poison control. The organization has 94352 authors who have published 206297 publications receiving 9070052 citations. The organization is also known as: UT-Austin & UT Austin.


Papers
More filters
Journal ArticleDOI
TL;DR: In this paper, the authors provide a low-complexity distributed algorithm that converges to a near-optimal solution with a theoretical performance guarantee, and observe that simple per-tier biasing loses surprisingly little, if the bias values Aj are chosen carefully.
Abstract: For small cell technology to significantly increase the capacity of tower-based cellular networks, mobile users will need to be actively pushed onto the more lightly loaded tiers (corresponding to, e.g., pico and femtocells), even if they offer a lower instantaneous SINR than the macrocell base station (BS). Optimizing a function of the long-term rate for each user requires (in general) a massive utility maximization problem over all the SINRs and BS loads. On the other hand, an actual implementation will likely resort to a simple biasing approach where a BS in tier j is treated as having its SINR multiplied by a factor Aj ≥ 1, which makes it appear more attractive than the heavily-loaded macrocell. This paper bridges the gap between these approaches through several physical relaxations of the network-wide association problem, whose solution is NP hard. We provide a low-complexity distributed algorithm that converges to a near-optimal solution with a theoretical performance guarantee, and we observe that simple per-tier biasing loses surprisingly little, if the bias values Aj are chosen carefully. Numerical results show a large (3.5x) throughput gain for cell-edge users and a 2x rate gain for median users relative to a maximizing received power association.

1,129 citations

Journal ArticleDOI
TL;DR: The simulation results suggest that minimum metabolic energy per unit distance traveled is a valid measure of walking performance.
Abstract: A three-dimensional, neuromusculoskeletal model of the body was combined with dynamic optimization theory to simulate normal walking on level ground. The body was modeled as a 23 degree-of-freedom mechanical linkage, actuated by 54 muscles. The dynamic optimization problem was to calculate the muscle excitation histories, muscle forces, and limb motions subject to minimum metabolic energy expenditure per unit distance traveled. Muscle metabolic energy was calculated by slimming five terms: the basal or resting heat, activation heat, maintenance heat, shortening heat, and the mechanical work done by all the muscles in the model. The gait cycle was assumed to be symmetric; that is, the muscle excitations for the right and left legs and the initial and terminal states in the model were assumed to be equal. Importantly, a tracking problem was not solved. Rather only a set of terminal constraints was placed on the states of the model to enforce repeatability of the gait cycle. Quantitative comparisons of the model predictions with patterns of body-segmental displacements, ground-reaction forces, and muscle activations obtained from experiment show that the simulation reproduces the salient features of normal gait. The simulation results suggest that minimum metabolic energy per unit distance traveled is a valid measure of walking performance.

1,128 citations

Journal ArticleDOI
TL;DR: In this article, the decay rate of the core field is a very strong function of temperature and therefore of the magnetic flux density, which is not present in the decay of the weaker fields associated with ordinary radio pulsars.
Abstract: We calculate the quiescent X-ray, neutrino, and Alfven wave emission from a neutron star with a very strong magnetic field, Bdipole ~ 1014 − 1015 G and Binterior ~ (5–10) × 1015 G. These results are compared with observations of quiescent emission from the soft gamma repeaters and from a small class of anomalous X-ray pulsars that we have previously identified with such objects. The magnetic field, rather than rotation, provides the main source of free energy, and the decaying field is capable of powering the quiescent X-ray emission and particle emission observed from these sources. New features that are not present in the decay of the weaker fields associated with ordinary radio pulsars include fracturing of the neutron star crust, strong heating of its core, and effective suppression of thermal conduction perpendicular to the magnetic field. As the magnetic field is forced through the crust by diffusive motions in the core, multiple small-scale fractures are excited, as well as a few large fractures that can power soft gamma repeater bursts. The decay rate of the core field is a very strong function of temperature and therefore of the magnetic flux density. The strongest prediction of the model is that these sources will show no optical emissions associated with X-ray heating of an accretion disk.

1,128 citations

Journal ArticleDOI
TL;DR: Results are consistent with the assertion that pressure to be thin, thin-ideal internalization, body dissatisfaction, dieting, and negative affect are risk factors for bulimic pathology and provide support for the dual-pathway model.
Abstract: Because there have been few longitudinal investigations of integrative etiological theories of bulimia nervosa, this study prospectively tested the dual-pathway model using random regression growth curve models and data from a 3-wave community sample of adolescent girls (N = 231). Initial pressure to be thin and thin-ideal internalization predicted subsequent growth in body dissatisfaction, initial body dissatisfaction predicted growth in dieting and negative affect, and initial dieting and negative affect predicted growth in bulimic symptoms. There was prospective evidence for most of the hypothesized mediational effects. Results are consistent with the assertion that pressure to be thin, thin-ideal internalization, body dissatisfaction, dieting, and negative affect are risk factors for bulimic pathology and provide support for the dual-pathway model.

1,122 citations

Journal ArticleDOI
TL;DR: Professor Arumugam Manthiram looks back at the evolution of cathode chemistry, discussing the three major categories of oxide cathode materials with an emphasis on the fundamental solid-state chemistry that has enabled these advances.
Abstract: Lithium-ion batteries have aided the portable electronics revolution for nearly three decades. They are now enabling vehicle electrification and beginning to enter the utility industry. The emergence and dominance of lithium-ion batteries are due to their higher energy density compared to other rechargeable battery systems, enabled by the design and development of high-energy density electrode materials. Basic science research, involving solid-state chemistry and physics, has been at the center of this endeavor, particularly during the 1970s and 1980s. With the award of the 2019 Nobel Prize in Chemistry to the development of lithium-ion batteries, it is enlightening to look back at the evolution of the cathode chemistry that made the modern lithium-ion technology feasible. This review article provides a reflection on how fundamental studies have facilitated the discovery, optimization, and rational design of three major categories of oxide cathodes for lithium-ion batteries, and a personal perspective on the future of this important area. The 2019 Nobel Prize in Chemistry has been awarded to a trio of pioneers of the modern lithium-ion battery. Here, Professor Arumugam Manthiram looks back at the evolution of cathode chemistry, discussing the three major categories of oxide cathode materials with an emphasis on the fundamental solid-state chemistry that has enabled these advances.

1,120 citations


Authors

Showing all 95138 results

NameH-indexPapersCitations
George M. Whitesides2401739269833
Eugene Braunwald2301711264576
Yi Chen2174342293080
Robert J. Lefkowitz214860147995
Joseph L. Goldstein207556149527
Eric N. Olson206814144586
Hagop M. Kantarjian2043708210208
Rakesh K. Jain2001467177727
Francis S. Collins196743250787
Gordon B. Mills1871273186451
Scott M. Grundy187841231821
Michael S. Brown185422123723
Eric Boerwinkle1831321170971
Aaron R. Folsom1811118134044
Jiaguo Yu178730113300
Network Information
Related Institutions (5)
Stanford University
320.3K papers, 21.8M citations

97% related

Columbia University
224K papers, 12.8M citations

96% related

University of California, San Diego
204.5K papers, 12.3M citations

96% related

University of Michigan
342.3K papers, 17.6M citations

96% related

University of Washington
305.5K papers, 17.7M citations

95% related

Performance
Metrics
No. of papers from the Institution in previous years
YearPapers
2023304
20221,210
202110,141
202010,331
20199,727
20188,973