scispace - formally typeset
Search or ask a question
Institution

University of Texas at Austin

EducationAustin, Texas, United States
About: University of Texas at Austin is a education organization based out in Austin, Texas, United States. It is known for research contribution in the topics: Population & Poison control. The organization has 94352 authors who have published 206297 publications receiving 9070052 citations. The organization is also known as: UT-Austin & UT Austin.


Papers
More filters
01 Aug 2013
TL;DR: The improved method, the individual efficiency corrected calculation, produces more accurate estimates inrelative gene expression than the 2-ΔΔCT method and is thus a better way to calculate relative gene expression.
Abstract: Background The 2-ΔΔCT method has been extensively used as a relative quantification strategy for quantitative real-time polymerase chain reaction (qPCR) data analysis. This method is a convenient way to calculate relative gene expression levels between different samples in that it directly uses the threshold cycles (CTs) generated by the qPCR system for calculation. However, this approach relies heavily on an invalid assumption of 100% PCR amplification efficiency across all samples. In addition, the 2-ΔΔCT method is applied to data with automatic removal of background fluorescence by the qPCR software. Since the background fluorescence is unknown, subtracting an inaccurate background can lead to distortion of the results. To address these problems, we present an improved method, the individual efficiency corrected calculation.

1,012 citations

Journal ArticleDOI
TL;DR: It is proposed that OX40L on TSLP-activated DCs triggers Th2 cell polarization in the absence of IL-12, and can switch IL-10–producing regulatory Th cell responses into TNF-α–producing inflammatory Th cell responds.
Abstract: We recently showed that dendritic cells (DCs) activated by thymic stromal lymphopoietin (TSLP) prime naive CD4 + T cells to differentiate into T helper type 2 (Th2) cells that produced high amounts of tumor necrosis factor- α (TNF- α ), but no interleukin (IL)-10 Here we report that TSLP induced human DCs to express OX40 ligand (OX40L) but not IL-12 TSLP-induced OX40L on DCs was required for triggering naive CD4 + T cells to produce IL-4, -5, and -13 We further revealed the following three novel functional properties of OX40L: (a) OX40L selectively promoted TNF- α , but inhibited IL-10 production in developing Th2 cells; (b) OX40L lost the ability to polarize Th2 cells in the presence of IL-12; and (c) OX40L exacerbated IL-12–induced Th1 cell inflammation by promoting TNF- α , while inhibiting IL-10 We conclude that OX40L on TSLP-activated DCs triggers Th2 cell polarization in the absence of IL-12, and propose that OX40L can switch IL-10–producing regulatory Th cell responses into TNF- α –producing inflammatory Th cell responses

1,012 citations

Proceedings ArticleDOI
26 Oct 2013
TL;DR: In this paper, the authors studied indistinguishability obfuscation and functional encryption for general circuits, and gave constructions for the two schemes that support all polynomial-size circuits.
Abstract: In this work, we study indistinguishability obfuscation and functional encryption for general circuits: Indistinguishability obfuscation requires that given any two equivalent circuits C0 and C1 of similar size, the obfuscations of C0 and C1 should be computationally indistinguishable. In functional encryption, cipher texts encrypt inputs x and keys are issued for circuits C. Using the key SKC to decrypt a cipher text CTx = Enc(x), yields the value C(x) but does not reveal anything else about x. Furthermore, no collusion of secret key holders should be able to learn anything more than the union of what they can each learn individually. We give constructions for indistinguishability obfuscation and functional encryption that supports all polynomial-size circuits. We accomplish this goal in three steps: - (1) We describe a candidate construction for indistinguishability obfuscation for NC1 circuits. The security of this construction is based on a new algebraic hardness assumption. The candidate and assumption use a simplified variant of multilinear maps, which we call Multilinear Jigsaw Puzzles. (2) We show how to use indistinguishability obfuscation for NC1 together with Fully Homomorphic Encryption (with decryption in NC1) to achieve indistinguishability obfuscation for all circuits. (3) Finally, we show how to use indistinguishability obfuscation for circuits, public-key encryption, and non-interactive zero knowledge to achieve functional encryption for all circuits. The functional encryption scheme we construct also enjoys succinct cipher texts, which enables several other applications.

1,011 citations

Journal ArticleDOI
J. Abadie1, B. P. Abbott1, R. Abbott1, M. R. Abernathy2  +719 moreInstitutions (79)
TL;DR: In this paper, Kalogera et al. presented an up-to-date summary of the rates for all types of compact binary coalescence sources detectable by the initial and advanced versions of the ground-based gravitational-wave detectors LIGO and Virgo.
Abstract: We present an up-to-date, comprehensive summary of the rates for all types of compact binary coalescence sources detectable by the initial and advanced versions of the ground-based gravitational-wave detectors LIGO and Virgo. Astrophysical estimates for compact-binary coalescence rates depend on a number of assumptions and unknown model parameters and are still uncertain. The most confident among these estimates are the rate predictions for coalescing binary neutron stars which are based on extrapolations from observed binary pulsars in our galaxy. These yield a likely coalescence rate of 100 Myr−1 per Milky Way Equivalent Galaxy (MWEG), although the rate could plausibly range from 1 Myr−1 MWEG−1 to 1000 Myr−1 MWEG−1 (Kalogera et al 2004 Astrophys. J. 601 L179; Kalogera et al 2004 Astrophys. J. 614 L137 (erratum)). We convert coalescence rates into detection rates based on data from the LIGO S5 and Virgo VSR2 science runs and projected sensitivities for our advanced detectors. Using the detector sensitivities derived from these data, we find a likely detection rate of 0.02 per year for Initial LIGO–Virgo interferometers, with a plausible range between 2 × 10−4 and 0.2 per year. The likely binary neutron–star detection rate for the Advanced LIGO–Virgo network increases to 40 events per year, with a range between 0.4 and 400 per year.

1,011 citations

Journal ArticleDOI
TL;DR: It is concluded that the behavior genetics of personality is alive and flourishing but that there remains ample scope for new growth and that much social science research is seriously compromised if it does not incorporate genetic variation in its explanatory models.
Abstract: There is abundant evidence, some of it reviewed in this paper, that personality traits are substantially influenced by the genes. Much remains to be understood about how and why this is the case. We argue that placing the behavior genetics of personality in the context of epidemiology, evolutionary psychology, and neighboring psychological domains such as interests and attitudes should help lead to new insights. We suggest that important methodological advances, such as measuring traits from multiple viewpoints, using large samples, and analyzing data by modern multivariate techniques, have already led to major changes in our view of such perennial puzzles as the role of "unshared environment" in personality. In the long run, but not yet, approaches via molecular genetics and brain physiology may also make decisive contributions to understanding the heritability of personality traits. We conclude that the behavior genetics of personality is alive and flourishing but that there remains ample scope for new growth and that much social science research is seriously compromised if it does not incorporate genetic variation in its explanatory models.

1,009 citations


Authors

Showing all 95138 results

NameH-indexPapersCitations
George M. Whitesides2401739269833
Eugene Braunwald2301711264576
Yi Chen2174342293080
Robert J. Lefkowitz214860147995
Joseph L. Goldstein207556149527
Eric N. Olson206814144586
Hagop M. Kantarjian2043708210208
Rakesh K. Jain2001467177727
Francis S. Collins196743250787
Gordon B. Mills1871273186451
Scott M. Grundy187841231821
Michael S. Brown185422123723
Eric Boerwinkle1831321170971
Aaron R. Folsom1811118134044
Jiaguo Yu178730113300
Network Information
Related Institutions (5)
Stanford University
320.3K papers, 21.8M citations

97% related

Columbia University
224K papers, 12.8M citations

96% related

University of California, San Diego
204.5K papers, 12.3M citations

96% related

University of Michigan
342.3K papers, 17.6M citations

96% related

University of Washington
305.5K papers, 17.7M citations

95% related

Performance
Metrics
No. of papers from the Institution in previous years
YearPapers
2023304
20221,209
202110,137
202010,331
20199,727
20188,973