scispace - formally typeset
Search or ask a question

Showing papers by "University of Texas Health Science Center at Houston published in 2015"


Journal ArticleDOI
Adam Auton1, Gonçalo R. Abecasis2, David Altshuler3, Richard Durbin4  +514 moreInstitutions (90)
01 Oct 2015-Nature
TL;DR: The 1000 Genomes Project set out to provide a comprehensive description of common human genetic variation by applying whole-genome sequencing to a diverse set of individuals from multiple populations, and has reconstructed the genomes of 2,504 individuals from 26 populations using a combination of low-coverage whole-generation sequencing, deep exome sequencing, and dense microarray genotyping.
Abstract: The 1000 Genomes Project set out to provide a comprehensive description of common human genetic variation by applying whole-genome sequencing to a diverse set of individuals from multiple populations. Here we report completion of the project, having reconstructed the genomes of 2,504 individuals from 26 populations using a combination of low-coverage whole-genome sequencing, deep exome sequencing, and dense microarray genotyping. We characterized a broad spectrum of genetic variation, in total over 88 million variants (84.7 million single nucleotide polymorphisms (SNPs), 3.6 million short insertions/deletions (indels), and 60,000 structural variants), all phased onto high-quality haplotypes. This resource includes >99% of SNP variants with a frequency of >1% for a variety of ancestries. We describe the distribution of genetic variation across the global sample, and discuss the implications for common disease studies.

12,661 citations


Journal ArticleDOI
Peter H. Sudmant1, Tobias Rausch, Eugene J. Gardner2, Robert E. Handsaker3, Robert E. Handsaker4, Alexej Abyzov5, John Huddleston1, Yan Zhang6, Kai Ye7, Goo Jun8, Goo Jun9, Markus His Yang Fritz, Miriam K. Konkel10, Ankit Malhotra, Adrian M. Stütz, Xinghua Shi11, Francesco Paolo Casale12, Jieming Chen6, Fereydoun Hormozdiari1, Gargi Dayama8, Ken Chen13, Maika Malig1, Mark Chaisson1, Klaudia Walter12, Sascha Meiers, Seva Kashin3, Seva Kashin4, Erik Garrison14, Adam Auton15, Hugo Y. K. Lam, Xinmeng Jasmine Mu4, Xinmeng Jasmine Mu6, Can Alkan16, Danny Antaki17, Taejeong Bae5, Eliza Cerveira, Peter S. Chines18, Zechen Chong13, Laura Clarke12, Elif Dal16, Li Ding7, S. Emery8, Xian Fan13, Madhusudan Gujral17, Fatma Kahveci16, Jeffrey M. Kidd8, Yu Kong15, Eric-Wubbo Lameijer19, Shane A. McCarthy12, Paul Flicek12, Richard A. Gibbs20, Gabor T. Marth14, Christopher E. Mason21, Androniki Menelaou22, Androniki Menelaou23, Donna M. Muzny24, Bradley J. Nelson1, Amina Noor17, Nicholas F. Parrish25, Matthew Pendleton24, Andrew Quitadamo11, Benjamin Raeder, Eric E. Schadt24, Mallory Romanovitch, Andreas Schlattl, Robert Sebra24, Andrey A. Shabalin26, Andreas Untergasser27, Jerilyn A. Walker10, Min Wang20, Fuli Yu20, Chengsheng Zhang, Jing Zhang6, Xiangqun Zheng-Bradley12, Wanding Zhou13, Thomas Zichner, Jonathan Sebat17, Mark A. Batzer10, Steven A. McCarroll3, Steven A. McCarroll4, Ryan E. Mills8, Mark Gerstein6, Ali Bashir24, Oliver Stegle12, Scott E. Devine2, Charles Lee28, Evan E. Eichler1, Jan O. Korbel12 
01 Oct 2015-Nature
TL;DR: In this paper, the authors describe an integrated set of eight structural variant classes comprising both balanced and unbalanced variants, which are constructed using short-read DNA sequencing data and statistically phased onto haplotype blocks in 26 human populations.
Abstract: Structural variants are implicated in numerous diseases and make up the majority of varying nucleotides among human genomes. Here we describe an integrated set of eight structural variant classes comprising both balanced and unbalanced variants, which we constructed using short-read DNA sequencing data and statistically phased onto haplotype blocks in 26 human populations. Analysing this set, we identify numerous gene-intersecting structural variants exhibiting population stratification and describe naturally occurring homozygous gene knockouts that suggest the dispensability of a variety of human genes. We demonstrate that structural variants are enriched on haplotypes identified by genome-wide association studies and exhibit enrichment for expression quantitative trait loci. Additionally, we uncover appreciable levels of structural variant complexity at different scales, including genic loci subject to clusters of repeated rearrangement and complex structural variants with multiple breakpoints likely to have formed through individual mutational events. Our catalogue will enhance future studies into structural variant demography, functional impact and disease association.

1,971 citations


Journal ArticleDOI
Majid Nikpay1, Anuj Goel2, Won H-H.3, Leanne M. Hall4  +164 moreInstitutions (60)
TL;DR: This article conducted a meta-analysis of coronary artery disease (CAD) cases and controls, interrogating 6.7 million common (minor allele frequency (MAF) > 0.05) and 2.7 millions low-frequency (0.005 < MAF < 0.5) variants.
Abstract: Existing knowledge of genetic variants affecting risk of coronary artery disease (CAD) is largely based on genome-wide association study (GWAS) analysis of common SNPs. Leveraging phased haplotypes from the 1000 Genomes Project, we report a GWAS meta-analysis of ∼185,000 CAD cases and controls, interrogating 6.7 million common (minor allele frequency (MAF) > 0.05) and 2.7 million low-frequency (0.005 < MAF < 0.05) variants. In addition to confirming most known CAD-associated loci, we identified ten new loci (eight additive and two recessive) that contain candidate causal genes newly implicating biological processes in vessel walls. We observed intralocus allelic heterogeneity but little evidence of low-frequency variants with larger effects and no evidence of synthetic association. Our analysis provides a comprehensive survey of the fine genetic architecture of CAD, showing that genetic susceptibility to this common disease is largely determined by common SNPs of small effect size.

1,839 citations


Journal ArticleDOI
08 Sep 2015-JAMA
TL;DR: Among extremely preterm infants born at US academic centers over the last 20 years, changes in maternal and infant care practices and modest reductions in several morbidities were observed, although bronchopulmonary dysplasia increased.
Abstract: Importance Extremely preterm infants contribute disproportionately to neonatal morbidity and mortality. Objective To review 20-year trends in maternal/neonatal care, complications, and mortality among extremely preterm infants born at Neonatal Research Network centers. Design, Setting, Participants Prospective registry of 34 636 infants, 22 to 28 weeks’ gestation, birth weight of 401 to 1500 g, and born at 26 network centers between 1993 and 2012. Exposures Extremely preterm birth. Main Outcomes and Measures Maternal/neonatal care, morbidities, and survival. Major morbidities, reported for infants who survived more than 12 hours, were severe necrotizing enterocolitis, infection, bronchopulmonary dysplasia, severe intracranial hemorrhage, cystic periventricular leukomalacia, and/or severe retinopathy of prematurity. Regression models assessed yearly changes and were adjusted for study center, race/ethnicity, gestational age, birth weight for gestational age, and sex. Results Use of antenatal corticosteroids increased from 1993 to 2012 (24% [348 of 1431 infants]) to 87% (1674 of 1919 infants];P Conclusions and Relevance Among extremely preterm infants born at US academic centers over the last 20 years, changes in maternal and infant care practices and modest reductions in several morbidities were observed, although bronchopulmonary dysplasia increased. Survival increased most markedly for infants born at 23 and 24 weeks’ gestation and survival without major morbidity increased for infants aged 25 to 28 weeks. These findings may be valuable in counseling families and developing novel interventions. Trial Registration clinicaltrials.gov Identifier:NCT00063063.

1,818 citations


Journal ArticleDOI
03 Feb 2015-JAMA
TL;DR: In this article, the effectiveness and safety of transfusing patients with severe trauma and major bleeding using plasma, platelets, and red blood cells in a 1:1:1 ratio compared with a 1 :1:2 ratio was evaluated.
Abstract: Importance Severely injured patients experiencing hemorrhagic shock often require massive transfusion. Earlier transfusion with higher blood product ratios (plasma, platelets, and red blood cells), defined as damage control resuscitation, has been associated with improved outcomes; however, there have been no large multicenter clinical trials. Objective To determine the effectiveness and safety of transfusing patients with severe trauma and major bleeding using plasma, platelets, and red blood cells in a 1:1:1 ratio compared with a 1:1:2 ratio. Design, Setting, and Participants Pragmatic, phase 3, multisite, randomized clinical trial of 680 severely injured patients who arrived at 1 of 12 level I trauma centers in North America directly from the scene and were predicted to require massive transfusion between August 2012 and December 2013. Interventions Blood product ratios of 1:1:1 (338 patients) vs 1:1:2 (342 patients) during active resuscitation in addition to all local standard-of-care interventions (uncontrolled). Main Outcomes and Measures Primary outcomes were 24-hour and 30-day all-cause mortality. Prespecified ancillary outcomes included time to hemostasis, blood product volumes transfused, complications, incidence of surgical procedures, and functional status. Results No significant differences were detected in mortality at 24 hours (12.7% in 1:1:1 group vs 17.0% in 1:1:2 group; difference, −4.2% [95% CI, −9.6% to 1.1%]; P = .12) or at 30 days (22.4% vs 26.1%, respectively; difference, −3.7% [95% CI, −10.2% to 2.7%]; P = .26). Exsanguination, which was the predominant cause of death within the first 24 hours, was significantly decreased in the 1:1:1 group (9.2% vs 14.6% in 1:1:2 group; difference, −5.4% [95% CI, −10.4% to −0.5%]; P = .03). More patients in the 1:1:1 group achieved hemostasis than in the 1:1:2 group (86% vs 78%, respectively; P = .006). Despite the 1:1:1 group receiving more plasma (median of 7 U vs 5 U, P P Conclusions and Relevance Among patients with severe trauma and major bleeding, early administration of plasma, platelets, and red blood cells in a 1:1:1 ratio compared with a 1:1:2 ratio did not result in significant differences in mortality at 24 hours or at 30 days. However, more patients in the 1:1:1 group achieved hemostasis and fewer experienced death due to exsanguination by 24 hours. Even though there was an increased use of plasma and platelets transfused in the 1:1:1 group, no other safety differences were identified between the 2 groups. Trial Registration clinicaltrials.gov Identifier:NCT01545232

1,643 citations


Journal ArticleDOI
TL;DR: The authors' scores achieved the highest discriminative power compared with all the deleteriousness prediction scores tested and showed low false-positive prediction rate for benign yet rare nonsynonymous variants, which demonstrated the value of combining information from multiple orthologous approaches.
Abstract: Accurate deleteriousness prediction for nonsynonymous variants is crucial for distinguishing pathogenic mutations from background polymorphisms in whole exome sequencing (WES) studies. Although many deleteriousness prediction methods have been developed, their prediction results are sometimes inconsistent with each other and their relative merits are still unclear in practical applications. To address these issues, we comprehensively evaluated the predictive performance of 18 current deleteriousness-scoring methods, including 11 function prediction scores (PolyPhen-2, SIFT, MutationTaster, Mutation Assessor, FATHMM, LRT, PANTHER, PhD-SNP, SNAP, SNPs&GO and MutPred), 3 conservation scores (GERP++, SiPhy and PhyloP) and 4 ensemble scores (CADD, PON-P, KGGSeq and CONDEL). We found that FATHMM and KGGSeq had the highest discriminative power among independent scores and ensemble scores, respectively. Moreover, to ensure unbiased performance evaluation of these prediction scores, we manually collected three distinct testing datasets, on which no current prediction scores were tuned. In addition, we developed two new ensemble scores that integrate nine independent scores and allele frequency. Our scores achieved the highest discriminative power compared with all the deleteriousness prediction scores tested and showed low false-positive prediction rate for benign yet rare nonsynonymous variants, which demonstrated the value of combining information from multiple orthologous approaches. Finally, to facilitate variant prioritization in WES studies, we have pre-computed our ensemble scores for 87 347 044 possible variants in the whole-exome and made them publicly available through the ANNOVAR software and the dbNSFP database.

878 citations


Journal ArticleDOI
TL;DR: Visual color difference thresholds can serve as a quality control tool to guide the selection of esthetic dental materials, evaluate clinical performance, and interpret visual and instrumental findings in clinical dentistry, dental research, and subsequent standardization.
Abstract: Purpose The aim of this prospective multicenter study was to determine 50:50% perceptibility threshold (PT) and 50:50% acceptability threshold (AT) of dental ceramic under simulated clinical settings. Materials and Methods The spectral radiance of 63 monochromatic ceramic specimens was determined using a non-contact spectroradiometer. A total of 60 specimen pairs, divided into 3 sets of 20 specimen pairs (medium to light shades, medium to dark shades, and dark shades), were selected for psychophysical experiment. The coordinating center and seven research sites obtained the Institutional Review Board (IRB) approvals prior the beginning of the experiment. Each research site had 25 observers, divided into five groups of five observers: dentists—D, dental students—S, dental auxiliaries—A, dental technicians—T, and lay persons—L. There were 35 observers per group (five observers per group at each site ×7 sites), for a total of 175 observers. Visual color comparisons were performed using a viewing booth. Takagi–Sugeno–Kang (TSK) fuzzy approximation was used for fitting the data points. The 50:50% PT and 50:50% AT were determined in CIELAB and CIEDE2000. The t-test was used to evaluate the statistical significance in thresholds differences. Results The CIELAB 50:50% PT was ΔEab = 1.2, whereas 50:50% AT was ΔEab = 2.7. Corresponding CIEDE2000 (ΔE00) values were 0.8 and 1.8, respectively. 50:50% PT by the observer group revealed differences among groups D, A, T, and L as compared with 50:50% PT for all observers. The 50:50% AT for all observers was statistically different than 50:50% AT in groups T and L. Conclusion A 50:50% perceptibility and ATs were significantly different. The same is true for differences between two color difference formulas ΔE00/ΔEab. Observer groups and sites showed high level of statistical difference in all thresholds. Clinical Significance Visual color difference thresholds can serve as a quality control tool to guide the selection of esthetic dental materials, evaluate clinical performance, and interpret visual and instrumental findings in clinical dentistry, dental research, and subsequent standardization. The importance of quality control in dentistry is reinforced by increased esthetic demands of patients and dental professionals.

627 citations


Journal ArticleDOI
TL;DR: Bdalumab treatment resulted in significant clinical improvements in patients with moderate-to-severe psoriasis, and was found to be superior to placebo at week 12 with respect to a 100% reduction in PASI score (PASI 100).
Abstract: BackgroundEarly clinical studies suggested that the anti–interleukin-17 receptor A monoclonal antibody brodalumab has efficacy in the treatment of psoriasis. MethodsIn two phase 3 studies (AMAGINE-2 and AMAGINE-3), patients with moderate-to-severe psoriasis were randomly assigned to receive brodalumab (210 mg or 140 mg every 2 weeks), ustekinumab (45 mg for patients with a body weight ≤100 kg and 90 mg for patients >100 kg), or placebo. At week 12, patients receiving brodalumab were randomly assigned again to receive a brodalumab maintenance dose of 210 mg every 2 weeks or 140 mg every 2 weeks, every 4 weeks, or every 8 weeks; patients receiving ustekinumab continued to receive ustekinumab every 12 weeks, and patients receiving placebo received 210 mg of brodalumab every 2 weeks. The primary aims were to evaluate the superiority of brodalumab over placebo at week 12 with respect to at least a 75% reduction in the psoriasis area-and-severity index score (PASI 75) and a static physician’s global assessment ...

609 citations


Journal ArticleDOI
TL;DR: The genetic findings support a causal effect of triglycerides on CHD risk, but a causal role for HDL-C, though possible, remains less certain.
Abstract: AIMS: To investigate the causal role of high-density lipoprotein cholesterol (HDL-C) and triglycerides in coronary heart disease (CHD) using multiple instrumental variables for Mendelian randomization. METHODS AND RESULTS: We developed weighted allele scores based on single nucleotide polymorphisms (SNPs) with established associations with HDL-C, triglycerides, and low-density lipoprotein cholesterol (LDL-C). For each trait, we constructed two scores. The first was unrestricted, including all independent SNPs associated with the lipid trait identified from a prior meta-analysis (threshold P < 2 × 10(-6)); and the second a restricted score, filtered to remove any SNPs also associated with either of the other two lipid traits at P ≤ 0.01. Mendelian randomization meta-analyses were conducted in 17 studies including 62,199 participants and 12,099 CHD events. Both the unrestricted and restricted allele scores for LDL-C (42 and 19 SNPs, respectively) associated with CHD. For HDL-C, the unrestricted allele score (48 SNPs) was associated with CHD (OR: 0.53; 95% CI: 0.40, 0.70), per 1 mmol/L higher HDL-C, but neither the restricted allele score (19 SNPs; OR: 0.91; 95% CI: 0.42, 1.98) nor the unrestricted HDL-C allele score adjusted for triglycerides, LDL-C, or statin use (OR: 0.81; 95% CI: 0.44, 1.46) showed a robust association. For triglycerides, the unrestricted allele score (67 SNPs) and the restricted allele score (27 SNPs) were both associated with CHD (OR: 1.62; 95% CI: 1.24, 2.11 and 1.61; 95% CI: 1.00, 2.59, respectively) per 1-log unit increment. However, the unrestricted triglyceride score adjusted for HDL-C, LDL-C, and statin use gave an OR for CHD of 1.01 (95% CI: 0.59, 1.75). CONCLUSION: The genetic findings support a causal effect of triglycerides on CHD risk, but a causal role for HDL-C, though possible, remains less certain.

579 citations


Journal ArticleDOI
TL;DR: This collaborative effort has identified 956 genes, including 375 not previously associated with human health, that underlie a Mendelian phenotype, providing insight into study design and analytical strategies, identify novel mechanisms of disease, and reveal the extensive clinical variability of Mendelia phenotypes.
Abstract: Discovering the genetic basis of a Mendelian phenotype establishes a causal link between genotype and phenotype, making possible carrier and population screening and direct diagnosis. Such discoveries also contribute to our knowledge of gene function, gene regulation, development, and biological mechanisms that can be used for developing new therapeutics. As of February 2015, 2,937 genes underlying 4,163 Mendelian phenotypes have been discovered, but the genes underlying ∼50% (i.e., 3,152) of all known Mendelian phenotypes are still unknown, and many more Mendelian conditions have yet to be recognized. This is a formidable gap in biomedical knowledge. Accordingly, in December 2011, the NIH established the Centers for Mendelian Genomics (CMGs) to provide the collaborative framework and infrastructure necessary for undertaking large-scale whole-exome sequencing and discovery of the genetic variants responsible for Mendelian phenotypes. In partnership with 529 investigators from 261 institutions in 36 countries, the CMGs assessed 18,863 samples from 8,838 families representing 579 known and 470 novel Mendelian phenotypes as of January 2015. This collaborative effort has identified 956 genes, including 375 not previously associated with human health, that underlie a Mendelian phenotype. These results provide insight into study design and analytical strategies, identify novel mechanisms of disease, and reveal the extensive clinical variability of Mendelian phenotypes. Discovering the gene underlying every Mendelian phenotype will require tackling challenges such as worldwide ascertainment and phenotypic characterization of families affected by Mendelian conditions, improvement in sequencing and analytical techniques, and pervasive sharing of phenotypic and genomic data among researchers, clinicians, and families.

579 citations


Journal ArticleDOI
Daniel I. Swerdlow1, David Preiss2, Karoline Kuchenbaecker3, Michael V. Holmes1, Jorgen Engmann1, Tina Shah1, Reecha Sofat1, Stefan Stender4, Paul C. D. Johnson2, Robert A. Scott5, Maarten Leusink6, Niek Verweij, Stephen J. Sharp5, Yiran Guo7, Claudia Giambartolomei1, Christina Chung1, Anne Peasey1, Antoinette Amuzu8, KaWah Li7, Jutta Palmen1, Philip N. Howard1, Jackie A. Cooper1, Fotios Drenos1, Yun Li1, Gordon D.O. Lowe2, John Gallacher9, Marlene C. W. Stewart9, Ioanna Tzoulaki10, Sarah G. Buxbaum4, Daphne L. van der A4, Nita G. Forouhi5, N. Charlotte Onland-Moret4, Yvonne T. van der Schouw4, Renate B. Schnabel11, Jaroslav A. Hubacek12, Ruzena Kubinova13, Migle Baceviciene14, Abdonas Tamosiunas13, Andrzej Pajak15, Romanvan Topor-Madry15, Urszula Stepaniak15, Sofia Malyutina15, Damiano Baldassarre16, Bengt Sennblad17, Elena Tremoli16, Ulf de Faire18, Fabrizio Veglia19, Ian Ford2, J. Wouter Jukema20, Rudi G. J. Westendorp20, Gert J. de Borst4, Pim A. de Jong4, Ale Algra, Wilko Spiering, Anke H. Maitland-van der Zee6, Olaf H. Klungel6, Anthonius de Boer6, Pieter A. Doevendans, Charles B. Eaton21, Jennifer G. Robinson22, David Duggan23, John Kjekshus24, John R. Downs25, Antonio M. Gotto, Anthony C Keech, Roberto Marchioli, Gianni Tognoni26, Peter S. Sever, Neil R Poulter, David D. Waters, Terje R. Pedersen, Pierre Amarenco, Haruo Nakamura, John J.V. McMurray2, James Lewsey3, Daniel I. Chasman27, Paul M. Ridker27, Aldo P. Maggioni28, Luigi Tavazzi28, Kausik K. Ray29, Sreenivasa Rao Kondapally Seshasai29, JoAnn E. Manson27, Jackie F. Price9, Peter H. Whincup30, Richard W Morris1, Debbie A Lawlor31, George Davey Smith31, Yoav Ben-Shlomo31, Pamela J. Schreiner32, Myriam Fornage33, David S. Siscovick34, Mary Cushman35, Meena Kumari1, Nicholas J. Wareham5, W M Monique Verschuren4, Susan Redline36, Sanjay R. Patel36, John C. Whittaker32, Anders Hamsten17, Joseph A.C. Delaney37, Caroline Dale38, Tom R. Gaunt30, Andrew Wong1, Diana Kuh1, Rebecca Hardy1, Sekar Kathiresan, Berta Almoguera Castillo7, Pim van der Harst, Eric J. Brunner1, Anne Tybjærg-Hansen4, Michael Marmot1, Ronald M. Krauss39, Michael Y. Tsai26, Josef Coresh40, Ron C. Hoogeveen40, Bruce M. Psaty34, Leslie A. Lange40, Hakon Hakonarson7, Frank Dudbridge8, Steve E. Humphries1, Philippa J. Talmud1, Mika Kivimäki1, Nicholas J. Timpson31, Claudia Langenberg5, Folkert W. Asselbergs, Mikhail Voevoda15, Martin Bobak1, Hynek Pikhart1, James G. Wilson40, Alexander P. Reiner40, Brendan J. Keating7, Aroon D. Hingorani1, Naveed Sattar2 
TL;DR: The increased risk of type 2 diabetes noted with statins is at least partially explained by HMGCR inhibition.

Journal ArticleDOI
Ron Do1, Ron Do2, Nathan O. Stitziel3, Hong-Hee Won1, Hong-Hee Won2, Anders Berg Jørgensen4, Stefano Duga5, Pier Angelica Merlini, Adam Kiezun1, Martin Farrall6, Anuj Goel6, Or Zuk1, Illaria Guella5, Rosanna Asselta5, Leslie A. Lange7, Gina M. Peloso1, Gina M. Peloso2, Paul L. Auer8, Domenico Girelli9, Nicola Martinelli9, Deborah N. Farlow1, Mark A. DePristo1, Robert Roberts10, Alex Stewart10, Danish Saleheen11, John Danesh11, Stephen E. Epstein12, Suthesh Sivapalaratnam13, G. Kees Hovingh13, John J.P. Kastelein13, Nilesh J. Samani14, Heribert Schunkert15, Jeanette Erdmann16, Svati H. Shah17, William E. Kraus17, Robert W. Davies10, Majid Nikpay10, Christopher T. Johansen18, Jian Wang18, Robert A. Hegele18, Eliana Hechter1, Winfried März19, Winfried März20, Winfried März21, Marcus E. Kleber21, Jie Huang, Andrew D. Johnson22, Mingyao Li23, Greg L. Burke24, Myron D. Gross25, Yongmei Liu26, Themistocles L. Assimes27, Gerardo Heiss7, Ethan M. Lange7, Aaron R. Folsom25, Herman A. Taylor28, Oliviero Olivieri9, Anders Hamsten29, Robert Clarke6, Dermot F. Reilly30, Wu Yin30, Manuel A. Rivas6, Peter Donnelly6, Jacques E. Rossouw22, Bruce M. Psaty31, Bruce M. Psaty32, David M. Herrington26, James G. Wilson28, Stephen S. Rich33, Michael J. Bamshad31, Russell P. Tracy34, L. Adrienne Cupples35, Daniel J. Rader23, Muredach P. Reilly23, John A. Spertus36, Sharon Cresci3, Jaana Hartiala37, W.H. Wilson Tang38, Stanley L. Hazen38, Hooman Allayee37, Alexander P. Reiner8, Alexander P. Reiner31, Christopher S. Carlson8, Charles Kooperberg8, Rebecca D. Jackson39, Eric Boerwinkle40, Eric S. Lander1, Stephen M. Schwartz31, Stephen M. Schwartz8, David S. Siscovick31, Ruth McPherson10, Anne Tybjærg-Hansen4, Gonçalo R. Abecasis41, Hugh Watkins6, Deborah A. Nickerson31, Diego Ardissino, Shamil R. Sunyaev1, Shamil R. Sunyaev2, Christopher J. O'Donnell, David Altshuler1, David Altshuler2, Stacey Gabriel1, Sekar Kathiresan1, Sekar Kathiresan2 
05 Feb 2015-Nature
TL;DR: Kathiresan et al. as mentioned in this paper used exome sequencing of nearly 10,000 people to identify alleles associated with early-onset myocardial infarction; mutations in low-density lipoprotein receptor (LDLR) or apolipoprotein A-V (APOA5) were associated with disease risk.
Abstract: Exome sequence analysis of nearly 10,000 people was carried out to identify alleles associated with early-onset myocardial infarction; mutations in low-density lipoprotein receptor (LDLR) or apolipoprotein A-V (APOA5) were associated with disease risk, identifying the key roles of low-density lipoprotein cholesterol and metabolism of triglyceride-rich lipoproteins. Sekar Kathiresan and colleagues use exome sequencing of nearly 10,000 people to probe the contribution of multiple rare mutations within a gene to risk for myocardial infarction at a population level. They find that mutations in low-density lipoprotein receptor (LDLR) or apolipoprotein A-V (APOA5) are associated with disease risk. When compared with non-carriers, LDLR mutation carriers had higher plasma levels of LDL cholesterol, whereas APOA5 mutation carriers had higher plasma levels of triglycerides. As well as confirming that APOA5 is a myocardial infarction gene, this work informs the design and conduct of rare-variant association studies for complex diseases. Myocardial infarction (MI), a leading cause of death around the world, displays a complex pattern of inheritance1,2. When MI occurs early in life, genetic inheritance is a major component to risk1. Previously, rare mutations in low-density lipoprotein (LDL) genes have been shown to contribute to MI risk in individual families3,4,5,6,7,8, whereas common variants at more than 45 loci have been associated with MI risk in the population9,10,11,12,13,14,15. Here we evaluate how rare mutations contribute to early-onset MI risk in the population. We sequenced the protein-coding regions of 9,793 genomes from patients with MI at an early age (≤50 years in males and ≤60 years in females) along with MI-free controls. We identified two genes in which rare coding-sequence mutations were more frequent in MI cases versus controls at exome-wide significance. At low-density lipoprotein receptor (LDLR), carriers of rare non-synonymous mutations were at 4.2-fold increased risk for MI; carriers of null alleles at LDLR were at even higher risk (13-fold difference). Approximately 2% of early MI cases harbour a rare, damaging mutation in LDLR; this estimate is similar to one made more than 40 years ago using an analysis of total cholesterol16. Among controls, about 1 in 217 carried an LDLR coding-sequence mutation and had plasma LDL cholesterol > 190 mg dl−1. At apolipoprotein A-V (APOA5), carriers of rare non-synonymous mutations were at 2.2-fold increased risk for MI. When compared with non-carriers, LDLR mutation carriers had higher plasma LDL cholesterol, whereas APOA5 mutation carriers had higher plasma triglycerides. Recent evidence has connected MI risk with coding-sequence mutations at two genes functionally related to APOA5, namely lipoprotein lipase15,17 and apolipoprotein C-III (refs 18, 19). Combined, these observations suggest that, as well as LDL cholesterol, disordered metabolism of triglyceride-rich lipoproteins contributes to MI risk.

Journal ArticleDOI
TL;DR: A meta-analysis and meta-regression of studies comparing inflammatory markers between patients with PTSD and healthy controls found that use of psychotropic medication and presence of comorbid major depressive disorder were important moderators that might explain the inconsistency between results of previous studies.

Journal ArticleDOI
TL;DR: Differences in hospital practices regarding the initiation of active treatment in infants born at 22, 23, or 24 weeks of gestation explain some of the between-hospital variation in survival and survival without impairment among such patients.
Abstract: BackgroundBetween-hospital variation in outcomes among extremely preterm infants is largely unexplained and may reflect differences in hospital practices regarding the initiation of active lifesaving treatment as compared with comfort care after birth. MethodsWe studied infants born between April 2006 and March 2011 at 24 hospitals included in the Eunice Kennedy Shriver National Institute of Child Health and Human Development Neonatal Research Network. Data were collected for 4987 infants born before 27 weeks of gestation without congenital anomalies. Active treatment was defined as any potentially lifesaving intervention administered after birth. Survival and neurodevelopmental impairment at 18 to 22 months of corrected age were assessed in 4704 children (94.3%). ResultsOverall rates of active treatment ranged from 22.1% (interquartile range [IQR], 7.7 to 100) among infants born at 22 weeks of gestation to 99.8% (IQR, 100 to 100) among those born at 26 weeks of gestation. Overall rates of survival and su...

Journal ArticleDOI
TL;DR: The variability in the values of radiomics features calculated on CT images from different CT scanners can be comparable to the variability in these features found in CT images of NSCLC tumors.
Abstract: ObjectivesThe purpose of this study was to determine the significance of interscanner variability in CT image radiomics studies.Materials and MethodsWe compared the radiomics features calculated for non–small cell lung cancer (NSCLC) tumors from 20 patients with those calculated for 17 scans of a sp

Journal ArticleDOI
TL;DR: Differences between transcriptomic age and chronological age are associated with biological features linked to ageing, such as blood pressure, cholesterol levels, fasting glucose, and body mass index and the transcriptomic prediction model adds biological relevance and complements existing epigenetic prediction models.
Abstract: Disease incidences increase with age, but the molecular characteristics of ageing that lead to increased disease susceptibility remain inadequately understood. Here we perform a whole-blood gene expression meta-analysis in 14,983 individuals of European ancestry (including replication) and identify 1,497 genes that are differentially expressed with chronological age. The age-associated genes do not harbor more age-associated CpG-methylation sites than other genes, but are instead enriched for the presence of potentially functional CpG-methylation sites in enhancer and insulator regions that associate with both chronological age and gene expression levels. We further used the gene expression profiles to calculate the 'transcriptomic age' of an individual, and show that differences between transcriptomic age and chronological age are associated with biological features linked to ageing, such as blood pressure, cholesterol levels, fasting glucose, and body mass index. The transcriptomic prediction model adds biological relevance and complements existing epigenetic prediction models, and can be used by others to calculate transcriptomic age in external cohorts.

Journal ArticleDOI
23 Apr 2015-Cell
TL;DR: This primer explains the different steps and considerations involved in structure determination by single-particle cryo-EM to provide an overview for scientists wishing to understand more about this technique and the interpretation of data obtained with it, as well as a starting guide for new practitioners.

Journal ArticleDOI
TL;DR: Data from clinical studies suggesting that induction of frontal cortex gamma oscillations during tasks that engage cognitive or complex perceptual functions is attenuated in schizophrenia is reviewed.

Journal ArticleDOI
TL;DR: The effects of several cross-tumor nonsynonymous RNA editing events on cell viability are experimentally demonstrated and the evidence that RNA editing could selectively affect drug sensitivity is provided, highlighting RNA editing as an exciting theme for investigating cancer mechanisms, biomarkers, and treatments.

Journal ArticleDOI
Kyle J. Gaulton1, Kyle J. Gaulton2, Teresa Ferreira1, Yeji Lee3  +258 moreInstitutions (73)
TL;DR: This paper performed fine mapping of 39 established type 2 diabetes (T2D) loci in 27,206 cases and 57,574 controls of European ancestry, and identified 49 distinct association signals at these loci including five mapping in or near KCNQ1.
Abstract: We performed fine mapping of 39 established type 2 diabetes (T2D) loci in 27,206 cases and 57,574 controls of European ancestry. We identified 49 distinct association signals at these loci, including five mapping in or near KCNQ1. 'Credible sets' of the variants most likely to drive each distinct signal mapped predominantly to noncoding sequence, implying that association with T2D is mediated through gene regulation. Credible set variants were enriched for overlap with FOXA2 chromatin immunoprecipitation binding sites in human islet and liver cells, including at MTNR1B, where fine mapping implicated rs10830963 as driving T2D association. We confirmed that the T2D risk allele for this SNP increases FOXA2-bound enhancer activity in islet- and liver-derived cells. We observed allele-specific differences in NEUROD1 binding in islet-derived cells, consistent with evidence that the T2D risk allele increases islet MTNR1B expression. Our study demonstrates how integration of genetic and genomic information can define molecular mechanisms through which variants underlying association signals exert their effects on disease.

Journal ArticleDOI
TL;DR: The CHEMDNER corpus is presented, a collection of 10,000 PubMed abstracts that contain a total of 84,355 chemical entity mentions labeled manually by expert chemistry literature curators, following annotation guidelines specifically defined for this task.
Abstract: The automatic extraction of chemical information from text requires the recognition of chemical entity mentions as one of its key steps. When developing supervised named entity recognition (NER) systems, the availability of a large, manually annotated text corpus is desirable. Furthermore, large corpora permit the robust evaluation and comparison of different approaches that detect chemicals in documents. We present the CHEMDNER corpus, a collection of 10,000 PubMed abstracts that contain a total of 84,355 chemical entity mentions labeled manually by expert chemistry literature curators, following annotation guidelines specifically defined for this task. The abstracts of the CHEMDNER corpus were selected to be representative for all major chemical disciplines. Each of the chemical entity mentions was manually labeled according to its structure-associated chemical entity mention (SACEM) class: abbreviation, family, formula, identifier, multiple, systematic and trivial. The difficulty and consistency of tagging chemicals in text was measured using an agreement study between annotators, obtaining a percentage agreement of 91. For a subset of the CHEMDNER corpus (the test set of 3,000 abstracts) we provide not only the Gold Standard manual annotations, but also mentions automatically detected by the 26 teams that participated in the BioCreative IV CHEMDNER chemical mention recognition task. In addition, we release the CHEMDNER silver standard corpus of automatically extracted mentions from 17,000 randomly selected PubMed abstracts. A version of the CHEMDNER corpus in the BioC format has been generated as well. We propose a standard for required minimum information about entity annotations for the construction of domain specific corpora on chemical and drug entities. The CHEMDNER corpus and annotation guidelines are available at: http://www.biocreative.org/resources/biocreative-iv/chemdner-corpus/

Journal ArticleDOI
TL;DR: The pattern of breathing in patients being weaned from mechanical ventilation was prospectively examined: one group underwent a successful weaning trial and were extubated, whereas another group developed respiratory failure and required the reinstitution of mechanical ventilation.
Abstract: We prospectively examined the pattern of breathing in patients being weaned from mechanical ventilation: one group (n = 10) underwent a successful weaning trial and were extubated, whereas another group (n = 7) developed respiratory failure and required the reinstitution of mechanical ventilation. During the period of ventilator support, minute ventilation (VI), tidal volume (VT), and respiratory frequency (f) were similar in the 2 groups. After discontinuation of the ventilator, VI remained similar in the 2 groups, but VT was lower and f was higher in the patients who failed the trial compared with those who were successful, 194 +/- 23 and 398 +/- 56 ml (p less than 0.001), respectively, and 32.3 +/- 2.3 and 20.9 +/- 2.8 breaths/min (p less than 0.001), respectively. The failure group displayed a significant increase in PaCO2 (p less than 0.005) during spontaneous breathing, without a concomitant increase in the alveolar-arterial PO2 difference. Eighty-one percent of the variance in PaCO2 was accounted for by the pattern of rapid, shallow breathing. During weaning, resting respiratory drive (reflected by mean inspiratory flow, VT/TI) and fractional inspiratory time (TI/Ttot) were similar in the 2 groups. The patients in the failure group showed significant increases in VT/TI, 265 +/- 27 to 328 +/- 32 ml/s (p less than 0.01), and VI, 5.82 +/- 0.53 to 7.32 +/- 0.52 L/min (p less than 0.01), from the beginning to the end of the weaning trial; VT and f showed no further change.(ABSTRACT TRUNCATED AT 250 WORDS)

Journal ArticleDOI
01 Jan 2015-Database
TL;DR: Based on RegNetwork, the statistical and topological properties of genome-wide regulatory networks for human and mouse are characterized and simple yet important network motifs that involve the interplays between TF-miRNA and their targets are extracted.
Abstract: Transcriptional and post-transcriptional regulation of gene expression is of fundamental importance to numerous biological processes. Nowadays, an increasing amount of gene regulatory relationships have been documented in various databases and literature. However, to more efficiently exploit such knowledge for biomedical research and applications, it is necessary to construct a genome-wide regulatory network database to integrate the information on gene regulatory relationships that are widely scattered in many different places. Therefore, in this work, we build a knowledge-based database, named 'RegNetwork', of gene regulatory networks for human and mouse by collecting and integrating the documented regulatory interactions among transcription factors (TFs), microRNAs (miRNAs) and target genes from 25 selected databases. Moreover, we also inferred and incorporated potential regulatory relationships based on transcription factor binding site (TFBS) motifs into RegNetwork. As a result, RegNetwork contains a comprehensive set of experimentally observed or predicted transcriptional and post-transcriptional regulatory relationships, and the database framework is flexibly designed for potential extensions to include gene regulatory networks for other organisms in the future. Based on RegNetwork, we characterized the statistical and topological properties of genome-wide regulatory networks for human and mouse, we also extracted and interpreted simple yet important network motifs that involve the interplays between TF-miRNA and their targets. In summary, RegNetwork provides an integrated resource on the prior information for gene regulatory relationships, and it enables us to further investigate context-specific transcriptional and post-transcriptional regulatory interactions based on domain-specific experimental data. Database URL: http://www.regnetworkweb.org.

Journal ArticleDOI
Gary Davies1, Nicola J. Armstrong2, J. C. Bis3, Jan Bressler4  +148 moreInstitutions (51)
TL;DR: In hypothesis-driven tests, there was significant association between general cognitive function and four genes previously associated with Alzheimer’s disease: TOMM40, APOE, ABCG1 and MEF2C.
Abstract: General cognitive function is substantially heritable across the human life course from adolescence to old age. We investigated the genetic contribution to variation in this important, health- and well-being-related trait in middle-aged and older adults. We conducted a meta-analysis of genome-wide association studies of 31 cohorts (N=53,949) in which the participants had undertaken multiple, diverse cognitive tests. A general cognitive function phenotype was tested for, and created in each cohort by principal component analysis. We report 13 genome-wide significant single-nucleotide polymorphism (SNP) associations in three genomic regions, 6q16.1, 14q12 and 19q13.32 (best SNP and closest gene, respectively: rs10457441, P=3.93 × 10(-9), MIR2113; rs17522122, P=2.55 × 10(-8), AKAP6; rs10119, P=5.67 × 10(-9), APOE/TOMM40). We report one gene-based significant association with the HMGN1 gene located on chromosome 21 (P=1 × 10(-6)). These genes have previously been associated with neuropsychiatric phenotypes. Meta-analysis results are consistent with a polygenic model of inheritance. To estimate SNP-based heritability, the genome-wide complex trait analysis procedure was applied to two large cohorts, the Atherosclerosis Risk in Communities Study (N=6617) and the Health and Retirement Study (N=5976). The proportion of phenotypic variation accounted for by all genotyped common SNPs was 29% (s.e.=5%) and 28% (s.e.=7%), respectively. Using polygenic prediction analysis, ~1.2% of the variance in general cognitive function was predicted in the Generation Scotland cohort (N=5487; P=1.5 × 10(-17)). In hypothesis-driven tests, there was significant association between general cognitive function and four genes previously associated with Alzheimer's disease: TOMM40, APOE, ABCG1 and MEF2C.

Journal ArticleDOI
TL;DR: It is demonstrated that Huntingtin, the Huntington disease gene product, functions as a scaffold protein for selective macroautophagy but it is dispensable for non-selective macroautogagy.
Abstract: Selective macroautophagy is an important protective mechanism against diverse cellular stresses In contrast to the well-characterized starvation-induced autophagy, the regulation of selective autophagy is largely unknown Here, we demonstrate that Huntingtin, the Huntington disease gene product, functions as a scaffold protein for selective macroautophagy but it is dispensable for non-selective macroautophagy In Drosophila, Huntingtin genetically interacts with autophagy pathway components In mammalian cells, Huntingtin physically interacts with the autophagy cargo receptor p62 to facilitate its association with the integral autophagosome component LC3 and with Lys-63-linked ubiquitin-modified substrates Maximal activation of selective autophagy during stress is attained by the ability of Huntingtin to bind ULK1, a kinase that initiates autophagy, which releases ULK1 from negative regulation by mTOR Our data uncover an important physiological function of Huntingtin and provide a missing link in the activation of selective macroautophagy in metazoans

Journal ArticleDOI
TL;DR: A novel model-flexible method called stairway plot is developed, which infers changes in population size over time using SNP frequency spectra, applicable for whole-genome sequences of hundreds of individuals.
Abstract: Inferring demographic history is an important task in population genetics. Many existing inference methods are based on predefined simplified population models, which are more suitable for hypothesis testing than exploratory analysis. We developed a novel model-flexible method called stairway plot, which infers changes in population size over time using SNP frequency spectra. This method is applicable for whole-genome sequences of hundreds of individuals. Using extensive simulation, we demonstrate the usefulness of the method for inferring demographic history, especially recent changes in population size. We apply the method to the whole-genome sequence data of 9 populations from the 1000 Genomes Project and show a pattern of fluctuations in human populations from 10,000 to 200,000 years ago.

Journal ArticleDOI
TL;DR: A dual strategy to identify common and low-frequency protein-coding variation associated with age at natural menopause and enrichment of signals in or near genes involved in delayed puberty are reported, highlighting the first molecular links between the onset and end of reproductive lifespan.
Abstract: Menopause timing has a substantial impact on infertility and risk of disease, including breast cancer, but the underlying mechanisms are poorly understood. We report a dual strategy in ∼70,000 women to identify common and low-frequency protein-coding variation associated with age at natural menopause (ANM). We identified 44 regions with common variants, including two regions harboring additional rare missense alleles of large effect. We found enrichment of signals in or near genes involved in delayed puberty, highlighting the first molecular links between the onset and end of reproductive lifespan. Pathway analyses identified major association with DNA damage response (DDR) genes, including the first common coding variant in BRCA1 associated with any complex trait. Mendelian randomization analyses supported a causal effect of later ANM on breast cancer risk (∼6% increase in risk per year; P = 3 × 10(-14)), likely mediated by prolonged sex hormone exposure rather than DDR mechanisms.

Journal ArticleDOI
TL;DR: Five subtypes of head and neck squamous cell carcinomas are identified, including two biologically distinct HPV subtypes, which provide a comprehensive overview of HPV+ as well as HPV− HNSCC biology with significant translational implications for biomarker development and personalized care for patients.
Abstract: Purpose: Current classification of head and neck squamous cell carcinomas (HNSCC) based on anatomic site and stage fails to capture biologic heterogeneity or adequately inform treatment. Experimental Design: Here, we use gene expression-based consensus clustering, copy number profiling, and human papillomavirus (HPV) status on a clinically homogenous cohort of 134 locoregionally advanced HNSCCs with 44% HPV + tumors together with additional cohorts, which in total comprise 938 tumors, to identify HNSCC subtypes and discover several subtype-specific, translationally relevant characteristics. Results: We identified five subtypes of HNSCC, including two biologically distinct HPV subtypes. One HPV + and one HPV − subtype show a prominent immune and mesenchymal phenotype. Prominent tumor infiltration with CD8 + lymphocytes characterizes this inflamed/mesenchymal subtype, independent of HPV status. Compared with other subtypes, the two HPV subtypes show low expression and no copy number events for EGFR/HER ligands. In contrast, the basal subtype is uniquely characterized by a prominent EGFR/HER signaling phenotype, negative HPV-status, as well as strong hypoxic differentiation not seen in other subtypes. Conclusion: Our five-subtype classification provides a comprehensive overview of HPV + as well as HPV − HNSCC biology with significant translational implications for biomarker development and personalized care for patients with HNSCC. Clin Cancer Res; 21(4); 870–81. ©2014 AACR .

Journal ArticleDOI
24 Sep 2015-Oncogene
TL;DR: Recent findings supporting the importance of DNA loci in lncRNA function and the underlying molecular mechanisms via cis or trans regulation are summarized and discussed, and their implications in cancer are discussed.
Abstract: The central dogma of molecular biology states that the flow of genetic information moves from DNA to RNA to protein. However, in the last decade this dogma has been challenged by new findings on non-coding RNAs (ncRNAs) such as microRNAs (miRNAs). More recently, long non-coding RNAs (lncRNAs) have attracted much attention due to their large number and biological significance. Many lncRNAs have been identified as mapping to regulatory elements including gene promoters and enhancers, ultraconserved regions and intergenic regions of protein-coding genes. Yet, the biological function and molecular mechanisms of lncRNA in human diseases in general and cancer in particular remain largely unknown. Data from the literature suggest that lncRNA, often via interaction with proteins, functions in specific genomic loci or use their own transcription loci for regulatory activity. In this review, we summarize recent findings supporting the importance of DNA loci in lncRNA function and the underlying molecular mechanisms via cis or trans regulation, and discuss their implications in cancer. In addition, we use the 8q24 genomic locus, a region containing interactive SNPs, DNA regulatory elements and lncRNAs, as an example to illustrate how single-nucleotide polymorphism (SNP) located within lncRNAs may be functionally associated with the individual's susceptibility to cancer.

Journal ArticleDOI
TL;DR: Improved understanding of the mechanobiology of aortic cells could lead to new therapeutic strategies for thoracic aorti aneurysms and dissections, which are associated with poorly controlled hypertension and mutations in genes for extracellular matrix constituents, membrane receptors, contractile proteins, and associated signaling molecules.
Abstract: Thoracic aortic diseases that involve progressive enlargement, acute dissection, or rupture are influenced by the hemodynamic loads and mechanical properties of the wall. We have only limited understanding, however, of the mechanobiological processes that lead to these potentially lethal conditions. Homeostasis requires that intramural cells sense their local chemomechanical environment and establish, maintain, remodel, or repair the extracellular matrix to provide suitable compliance and yet sufficient strength. Proper sensing, in turn, necessitates both receptors that connect the extracellular matrix to intracellular actomyosin filaments and signaling molecules that transmit the related information to the nucleus. Thoracic aortic aneurysms and dissections are associated with poorly controlled hypertension and mutations in genes for extracellular matrix constituents, membrane receptors, contractile proteins, and associated signaling molecules. This grouping of factors suggests that these thoracic diseases result, in part, from dysfunctional mechanosensing and mechanoregulation of the extracellular matrix by the intramural cells, which leads to a compromised structural integrity of the wall. Thus, improved understanding of the mechanobiology of aortic cells could lead to new therapeutic strategies for thoracic aortic aneurysms and dissections.