scispace - formally typeset
Search or ask a question

Showing papers by "University of Texas Medical Branch published in 2015"


Journal ArticleDOI
TL;DR: Use of cryptosporidium genomes has helped to identify promising therapeutic targets, and drugs are in development, but methods to assess the efficacy in vitro and in animals are not well standardised.
Abstract: Summary Cryptosporidium spp are well recognised as causes of diarrhoeal disease during waterborne epidemics and in immunocompromised hosts. Studies have also drawn attention to an underestimated global burden and suggest major gaps in optimum diagnosis, treatment, and immunisation. Cryptosporidiosis is increasingly identified as an important cause of morbidity and mortality worldwide. Studies in low-resource settings and high-income countries have confirmed the importance of cryptosporidium as a cause of diarrhoea and childhood malnutrition. Diagnostic tests for cryptosporidium infection are suboptimum, necessitating specialised tests that are often insensitive. Antigen-detection and PCR improve sensitivity, and multiplexed antigen detection and molecular assays are underused. Therapy has some effect in healthy hosts and no proven efficacy in patients with AIDS. Use of cryptosporidium genomes has helped to identify promising therapeutic targets, and drugs are in development, but methods to assess the efficacy in vitro and in animals are not well standardised. Partial immunity after exposure suggests the potential for successful vaccines, and several are in development; however, surrogates of protection are not well defined. Improved methods for propagation and genetic manipulation of the organism would be significant advances.

676 citations


Journal ArticleDOI
27 Feb 2015-Science
TL;DR: It is found that Ebola virus entry into host cells requires the endosomal calcium channels called two-pore channels called TPCs, and disrupting TPC function by gene knockout, small interfering RNAs, or small-molecule inhibitors halted virus trafficking and prevented infection.
Abstract: Ebola virus causes sporadic outbreaks of lethal hemorrhagic fever in humans, but there is no currently approved therapy. Cells take up Ebola virus by macropinocytosis, followed by trafficking through endosomal vesicles. However, few factors controlling endosomal virus movement are known. Here we find that Ebola virus entry into host cells requires the endosomal calcium channels called two-pore channels (TPCs). Disrupting TPC function by gene knockout, small interfering RNAs, or small-molecule inhibitors halted virus trafficking and prevented infection. Tetrandrine, the most potent small molecule that we tested, inhibited infection of human macrophages, the primary target of Ebola virus in vivo, and also showed therapeutic efficacy in mice. Therefore, TPC proteins play a key role in Ebola virus infection and may be effective targets for antiviral therapy.

441 citations


Journal ArticleDOI
07 Jan 2015-Neuron
TL;DR: Dysregulation of neuron-glia interaction through NFκB/C3/C 3aR signaling may contribute to synaptic dysfunction in AD, and C3aR antagonists may be therapeutically beneficial.

388 citations


Journal ArticleDOI
TL;DR: It is estimated that, if Chikungunya virus becomes established in Brazil, transmission could occur in 94% of municipalities in the country and maps of the risk of importation of each strain of CHIKV in Brazil are provided.
Abstract: In December 2013, an outbreak of Chikungunya virus (CHIKV) caused by the Asian genotype was notified in the Caribbean. The outbreak has since spread to 38 regions in the Americas. By September 2014, the first autochthonous CHIKV infections were confirmed in Oiapoque, North Brazil, and in Feira de Santana, Northeast Brazil. We compiled epidemiological and clinical data on suspected CHIKV cases in Brazil and polymerase-chain-reaction-based diagnostic was conducted on 68 serum samples from patients with symptom onset between April and September 2014. Two imported and four autochthonous cases were selected for virus propagation, RNA isolation, full-length genome sequencing, and phylogenetic analysis. We then followed CDC/PAHO guidelines to estimate the risk of establishment of CHIKV in Brazilian municipalities. We detected 41 CHIKV importations and 27 autochthonous cases in Brazil. Epidemiological and phylogenetic analyses indicated local transmission of the Asian CHIKV genotype in Oiapoque. Unexpectedly, we also discovered that the ECSA genotype is circulating in Feira de Santana. The presumed index case of the ECSA genotype was an individual who had recently returned from Angola and developed symptoms in Feira de Santana. We estimate that, if CHIKV becomes established in Brazil, transmission could occur in 94% of municipalities in the country and provide maps of the risk of importation of each strain of CHIKV in Brazil. The etiological strains associated with the early-phase CHIKV outbreaks in Brazil belong to the Asian and ECSA genotypes. Continued surveillance and vector mitigation strategies are needed to reduce the future public health impact of CHIKV in the Americas.

375 citations


Journal ArticleDOI
TL;DR: The functional makeup and expression of the nAChRs in mammalian brain, and their role as targets in neurodegenerative diseases, neurodevelopmental disorders, and neuropathic pain are discussed.

373 citations


Journal ArticleDOI
TL;DR: This study isolated clonally derived adipocytes from stromal vascular fractions of adult human BAT from two individuals and globally analyzed their molecular signatures and found that KCNK3 and MTUS1 were required for beige adipocyte differentiation and thermogenic function.
Abstract: Brown adipose tissue (BAT) acts in mammals as a natural defense system against hypothermia, and its activation to a state of increased energy expenditure is believed to protect against the development of obesity. Even though the existence of BAT in adult humans has been widely appreciated, its cellular origin and molecular identity remain elusive largely because of high cellular heterogeneity within various adipose tissue depots. To understand the nature of adult human brown adipocytes at single cell resolution, we isolated clonally derived adipocytes from stromal vascular fractions of adult human BAT from two individuals and globally analyzed their molecular signatures. We used RNA sequencing followed by unbiased genome-wide expression analyses and found that a population of uncoupling protein 1 (UCP1)-positive human adipocytes possessed molecular signatures resembling those of a recruitable form of thermogenic adipocytes (that is, beige adipocytes). In addition, we identified molecular markers that were highly enriched in UCP1-positive human adipocytes, a set that included potassium channel K3 (KCNK3) and mitochondrial tumor suppressor 1 (MTUS1). Further, we functionally characterized these two markers using a loss-of-function approach and found that KCNK3 and MTUS1 were required for beige adipocyte differentiation and thermogenic function. The results of this study present new opportunities for human BAT research, such as facilitating cell-based disease modeling and unbiased screens for thermogenic regulators.

365 citations


Journal ArticleDOI
TL;DR: A series of mutations in the recently emerged Indian Ocean Lineage that has adapted the virus for transmission for the first time by the Aedes albopictus urban mosquito vector are discussed, and CHIKV is compared to other arboviruses with and without similar histories of urbanization.

322 citations


Journal ArticleDOI
09 Oct 2015-Science
TL;DR: These findings demonstrate a distinctive viral RNA–host protein interaction to evade the innate immune response for increased epidemiological fitness.
Abstract: The global spread of dengue virus (DENV) infections has increased viral genetic diversity, some of which appears associated with greater epidemic potential. The mechanisms governing viral fitness in epidemiological settings, however, remain poorly defined. We identified a determinant of fitness in a foreign dominant (PR-2B) DENV serotype 2 (DENV-2) clade, which emerged during the 1994 epidemic in Puerto Rico and replaced an endemic (PR-1) DENV-2 clade. The PR-2B DENV-2 produced increased levels of subgenomic flavivirus RNA (sfRNA) relative to genomic RNA during replication. PR-2B sfRNA showed sequence-dependent binding to and prevention of tripartite motif 25 (TRIM25) deubiquitylation, which is critical for sustained and amplified retinoic acid–inducible gene 1 (RIG-I)–induced type I interferon expression. Our findings demonstrate a distinctive viral RNA–host protein interaction to evade the innate immune response for increased epidemiological fitness.

321 citations


Journal ArticleDOI
TL;DR: It is demonstrated that human subcutaneous white adipose tissue (sWAT) can transform from an energy-storing to anEnergy-dissipating tissue, which opens new research avenues in the quest to prevent and treat obesity and its metabolic complications.

311 citations


Journal ArticleDOI
TL;DR: Major postoperative complications and delirium are separately associated with adverse events and demonstrate a combined effect.
Abstract: Importance Major postoperative complications and delirium contribute independently to adverse outcomes and high resource use in patients who undergo major surgery; however, their interrelationship is not well examined. Objective To evaluate the association of major postoperative complications and delirium, alone and combined, with adverse outcomes after surgery. Design, Setting, and Participants Prospective cohort study in 2 large academic medical centers of 566 patients who were 70 years or older without recognized dementia or a history of delirium and underwent elective major orthopedic, vascular, or abdominal surgical procedures with a minimum 3-day hospitalization between June 18, 2010, and August 8, 2013. Data analysis took place from December 13, 2013, through May 1, 2015. Main Outcomes and Measures Major postoperative complications, defined as life-altering or life-threatening events (Accordion Severity grade 2 or higher), were identified by expert-panel adjudication. Delirium was measured daily with the Confusion Assessment Method and a validated medical record review method. The following 4 subgroups were analyzed: (1) no complications or delirium; (2) complications only; (3) delirium only; and (4) complications and delirium. Adverse outcomes included a length of stay (LOS) of more than 5 days, institutional discharge, and rehospitalization within 30 days of discharge. Results In the 566 participants, the mean (SD) age was 76.7 (5.2) years, 236 (41.7%) were male, and 523 (92.4%) were white. Forty-seven patients (8.3%) developed major complications and 135 (23.9%) developed delirium. Compared with no complications or delirium as the reference group, major complications only contributed to prolonged LOS only (relative risk [RR], 2.8; 95% CI, 1.9-4.0); by contrast, delirium only significantly increased all adverse outcomes, including prolonged LOS (RR, 1.9; 95% CI, 1.4-2.7), institutional discharge (RR, 1.5; 95% CI, 1.3-1.7), and 30-day readmission (RR, 2.3; 95% CI, 1.4-3.7). The subgroup with complications and delirium had the highest rates of all adverse outcomes, including prolonged LOS (RR, 3.4; 95% CI, 2.3-4.8), institutional discharge (RR, 1.8; 95% CI, 1.4-2.5), and 30-day readmission (RR, 3.0; 95% CI, 1.3-6.8). Delirium exerted the highest attributable risk at the population level (5.8%; 95% CI, 4.7-6.8) compared with all other adverse events (prolonged LOS, institutional discharge, or readmission). Conclusions and Relevance Major postoperative complications and delirium are separately associated with adverse events and demonstrate a combined effect. Delirium occurs more frequently and has a greater effect at the population level than other major complications.

308 citations


Journal ArticleDOI
TL;DR: An HGMB1 peptide inhibitor, P5779, which when administered in vivo can protect mice from acetaminophen-induced hepatoxicity, ischemia/reperfusion injury, and sepsis, is identified.
Abstract: Innate immune receptors for pathogen- and damage-associated molecular patterns (PAMPs and DAMPs) orchestrate inflammatory responses to infection and injury. Secreted by activated immune cells or passively released by damaged cells, HMGB1 is subjected to redox modification that distinctly influences its extracellular functions. Previously, it was unknown how the TLR4 signalosome distinguished between HMGB1 isoforms. Here we demonstrate that the extracellular TLR4 adaptor, myeloid differentiation factor 2 (MD-2), binds specifically to the cytokine-inducing disulfide isoform of HMGB1, to the exclusion of other isoforms. Using MD-2–deficient mice, as well as MD-2 silencing in macrophages, we show a requirement for HMGB1-dependent TLR4 signaling. By screening HMGB1 peptide libraries, we identified a tetramer (FSSE, designated P5779) as a specific MD-2 antagonist preventing MD-2–HMGB1 interaction and TLR4 signaling. P5779 does not interfere with lipopolysaccharide-induced cytokine/chemokine production, thus preserving PAMP-mediated TLR4–MD-2 responses. Furthermore, P5779 can protect mice against hepatic ischemia/reperfusion injury, chemical toxicity, and sepsis. These findings reveal a novel mechanism by which innate systems selectively recognize specific HMGB1 isoforms. The results may direct toward strategies aimed at attenuating DAMP-mediated inflammation while preserving antimicrobial immune responsiveness.

Journal ArticleDOI
TL;DR: A recent review as mentioned in this paper outlines major cellular pathways of amyloid-β degradation to provide a basis for future efforts to fully characterize the panel of pathways responsible for Aβ turnover.
Abstract: Amyloid-β proteins (Aβ) of 42 (Aβ42) and 40 aa (Aβ40) accumulate as senile plaques (SP) and cerebrovascular amyloid protein deposits that are defining diagnostic features of Alzheimer’s disease (AD) A number of rare mutations linked to familial AD (FAD) on the Aβ precursor protein (APP), Presenilin-1 (PS1), Presenilin- 2 (PS2), Adamalysin10, and other genetic risk factors for sporadic AD such as the e4 allele of Apolipoprotein E (ApoE-e4) foster the accumulation of Aβ and also induce the entire spectrum of pathology associated with the disease Aβ accumulation is therefore a key pathological event and a prime target for the prevention and treatment of AD APP is sequentially processed by β-site APP cleaving enzyme (BACE1) and γ-secretase, a multisubunit PS1/PS2-containing integral membrane protease, to generate Aβ Although Aβ accumulates in all forms of AD, the only pathways known to be affected in FAD increase Aβ production by APP gene duplication or via base substitutions on APP and γ-secretase subunits PS1 and PS2 that either specifically increase the yield of the longer Aβ42 or both Aβ40 and Aβ42 However, the vast majority of AD patients accumulate Aβ without these known mutations This led to proposals that impairment of Aβ degradation or clearance may play a key role in AD pathogenesis Several candidate enzymes, including Insulin-degrading enzyme (IDE), Neprilysin (NEP), Endothelin-converting enzyme (ECE), Angiotensin converting enzyme (ACE), Plasmin, and Matrix metalloproteinases (MMPs) have been identified and some have even been successfully evaluated in animal models Several studies also have demonstrated the capacity of γ-secretase inhibitors to paradoxically increase the yield of Aβ and we have recently established that the mechanism is by skirting Aβ degradation This review outlines major cellular pathways of Aβ degradation to provide a basis for future efforts to fully characterize the panel of pathways responsible for Aβ turnover

Journal ArticleDOI
TL;DR: It is reported that intrinsically disordered domains of the endocytic adaptor proteins, Epsin1 and AP180 are highly potent drivers of membrane curvature, and a balance of steric pressure on the two surfaces of the membrane drives this exclusion.
Abstract: Assembly of highly curved membrane structures is essential to cellular physiology. The prevailing view has been that proteins with curvature-promoting structural motifs, such as wedge-like amphipathic helices and crescent-shaped BAR domains, are required for bending membranes. Here we report that intrinsically disordered domains of the endocytic adaptor proteins, Epsin1 and AP180 are highly potent drivers of membrane curvature. This result is unexpected since intrinsically disordered domains lack a well-defined three-dimensional structure. However, in vitro measurements of membrane curvature and protein diffusivity demonstrate that the large hydrodynamic radii of these domains generate steric pressure that drives membrane bending. When disordered adaptor domains are expressed as transmembrane cargo in mammalian cells, they are excluded from clathrin-coated pits. We propose that a balance of steric pressure on the two surfaces of the membrane drives this exclusion. These results provide quantitative evidence for the influence of steric pressure on the content and assembly of curved cellular membrane structures.

Journal ArticleDOI
TL;DR: Recrudescent infection was detectable in multiple different LTs, and the population was genetically diverse, consistent with reactivation from a larger number of cells, underscore the challenges facing strategies to eradicate HIV infection.
Abstract: Antiretroviral therapy (ART) suppresses HIV replication in most individuals but cannot eradicate latently infected cells established before ART was initiated. Thus, infection rebounds when treatment is interrupted by reactivation of virus production from this reservoir. Currently, one or a few latently infected resting memory CD4 T cells are thought be the principal source of recrudescent infection, but this estimate is based on peripheral blood rather than lymphoid tissues (LTs), the principal sites of virus production and persistence before initiating ART. We, therefore, examined lymph node (LN) and gut-associated lymphoid tissue (GALT) biopsies from fully suppressed subjects, interrupted therapy, monitored plasma viral load (pVL), and repeated biopsies on 12 individuals as soon as pVL became detectable. Isolated HIV RNA-positive (vRNA+) cells were detected by in situ hybridization in LTs obtained before interruption in several patients. After interruption, multiple foci of vRNA+ cells were detected in 6 of 12 individuals as soon as pVL was measureable and in some subjects, in more than one anatomic site. Minimal estimates of the number of rebounding/founder (R/F) variants were determined by single-gene amplification and sequencing of viral RNA or DNA from peripheral blood mononuclear cells and plasma obtained at or just before viral recrudescence. Sequence analysis revealed a large number of R/F viruses representing recrudescent viremia from multiple sources. Together, these findings are consistent with the origins of recrudescent infection by reactivation from many latently infected cells at multiple sites. The inferred large pool of cells and sites to rekindle recrudescent infection highlights the challenges in eradicating HIV.

Journal ArticleDOI
21 May 2015-Nature
TL;DR: It is shown that lipid-nanoparticle-encapsulated short interfering RNAs (siRNAs) rapidly adapted to target the Makona outbreak strain of Ebola virus are able to protect 100% of rhesus monkeys against lethal challenge when treatment was initiated at 3 days after exposure while animals were viraemic and clinically ill.
Abstract: The current outbreak of Ebola virus in West Africa is unprecedented, causing more cases and fatalities than all previous outbreaks combined, and has yet to be controlled. Several post-exposure interventions have been employed under compassionate use to treat patients repatriated to Europe and the United States. However, the in vivo efficacy of these interventions against the new outbreak strain of Ebola virus is unknown. Here we show that lipid-nanoparticle-encapsulated short interfering RNAs (siRNAs) rapidly adapted to target the Makona outbreak strain of Ebola virus are able to protect 100% of rhesus monkeys against lethal challenge when treatment was initiated at 3 days after exposure while animals were viraemic and clinically ill. Although all infected animals showed evidence of advanced disease including abnormal haematology, blood chemistry and coagulopathy, siRNA-treated animals had milder clinical features and fully recovered, while the untreated control animals succumbed to the disease. These results represent the first, to our knowledge, successful demonstration of therapeutic anti-Ebola virus efficacy against the new outbreak strain in nonhuman primates and highlight the rapid development of lipid-nanoparticle-delivered siRNA as a countermeasure against this highly lethal human disease.

Journal ArticleDOI
TL;DR: The results show the benefits and specific challenges associated with drug repurposing and highlight the need for careful evaluation of approved drugs as rapidly deployable countermeasures against future pandemics.
Abstract: A systematic screen of FDA-approved drugs was performed to identify compounds with in vitro antiviral activities against Ebola virus (EBOV). Compounds active (>50% viral inhibition and <30% cellular toxicity) at a single concentration were tested in dose-response assays to quantitate the antiviral activities in replication and viral entry assays as well as cytotoxicity in the Vero cell line used to conduct these assays. On the basis of the approved human dosing, toxicity/tolerability, and pharmacokinetic data, seven of these in vitro hits from different pharmacological classes (chloroquine (CQ), amiodarone, prochlorperazine, benztropine, azithromycin, chlortetracycline, and clomiphene) were evaluated for their in vivo efficacy at a single dose and were administered via either intraperitoneal (ip) or oral route. Initially, azithromycin (100 mg/kg, twice daily, ip), CQ (90 mg/kg, twice daily, ip), and amiodarone (60 mg/kg, twice daily, ip) demonstrated significant increases in survival in the mouse model. After repeat evaluation, only CQ was found to reproducibly give significant efficacy in the mouse model with this dosing regimen. Azithromycin and CQ were also tested in a guinea pig model of EBOV infection over a range of doses, but none of the doses increased survival, and drug-related toxicity was observed at lower doses than in the mouse. These results show the benefits and specific challenges associated with drug repurposing and highlight the need for careful evaluation of approved drugs as rapidly deployable countermeasures against future pandemics.

01 Jan 2015
TL;DR: This review outlines major cellular pathways of Aβ degradation to provide a basis for future efforts to fully characterize the panel of pathways responsible for Aβ turnover and demonstrates the capacity of γ-secretase inhibitors to paradoxically increase the yield of A β.
Abstract: Amyloid-β proteins (Aβ) of 42 (Aβ42) and 40 aa (Aβ40) accumulate as senile plaques (SP) and cerebrovascular amyloid protein deposits that are defining diagnostic features of Alzheimer’s disease (AD). A number of rare mutations linked to familial AD (FAD) on the Aβ precursor protein (APP), Presenilin-1 (PS1), Presenilin- 2 (PS2), Adamalysin10, and other genetic risk factors for sporadic AD such as the e4 allele of Apolipoprotein E (ApoE-e4) foster the accumulation of Aβ and also induce the entire spectrum of pathology associated with the disease. Aβ accumulation is therefore a key pathological event and a prime target for the prevention and treatment of AD. APP is sequentially processed by β-site APP cleaving enzyme (BACE1) and γ-secretase, a multisubunit PS1/PS2-containing integral membrane protease, to generate Aβ. Although Aβ accumulates in all forms of AD, the only pathways known to be affected in FAD increase Aβ production by APP gene duplication or via base substitutions on APP and γ-secretase subunits PS1 and PS2 that either specifically increase the yield of the longer Aβ42 or both Aβ40 and Aβ42. However, the vast majority of AD patients accumulate Aβ without these known mutations. This led to proposals that impairment of Aβ degradation or clearance may play a key role in AD pathogenesis. Several candidate enzymes, including Insulin-degrading enzyme (IDE), Neprilysin (NEP), Endothelin-converting enzyme (ECE), Angiotensin converting enzyme (ACE), Plasmin, and Matrix metalloproteinases (MMPs) have been identified and some have even been successfully evaluated in animal models. Several studies also have demonstrated the capacity of γ-secretase inhibitors to paradoxically increase the yield of Aβ and we have recently established that the mechanism is by skirting Aβ degradation. This review outlines major cellular pathways of Aβ degradation to provide a basis for future efforts to fully characterize the panel of pathways responsible for Aβ turnover.

Journal ArticleDOI
TL;DR: To fully understand the role of dietary protein intake in healthy aging, greater efforts are needed to coordinate and integrate research design and data acquisition and interpretation from a variety of disciplines.

Journal ArticleDOI
10 Apr 2015
TL;DR: This review paper provides an overview of the components of an effective perioperative fluid administration plan and address both the physiologic principles and outcomes of fluid administration.
Abstract: Perioperative fluid therapy remains a highly debated topic. Its purpose is to maintain or restore effective circulating blood volume during the immediate perioperative period. Maintaining effective circulating blood volume and pressure are key components of assuring adequate organ perfusion while avoiding the risks associated with either organ hypo- or hyperperfusion. Relative to perioperative fluid therapy, three inescapable conclusions exist: overhydration is bad, underhydration is bad, and what we assume about the fluid status of our patients may be incorrect. There is wide variability of practice, both between individuals and institutions. The aims of this paper are to clearly define the risks and benefits of fluid choices within the perioperative space, to describe current evidence-based methodologies for their administration, and ultimately to reduce the variability with which perioperative fluids are administered. Based on the abovementioned acknowledgements, a group of 72 researchers, well known within the field of fluid resuscitation, were invited, via email, to attend a meeting that was held in Chicago in 2011 to discuss perioperative fluid therapy. From the 72 invitees, 14 researchers representing 7 countries attended, and thus, the international Fluid Optimization Group (FOG) came into existence. These researches, working collaboratively, have reviewed the data from 162 different fluid resuscitation papers including both operative and intensive care unit populations. This manuscript is the result of 3 years of evidence-based, discussions, analysis, and synthesis of the currently known risks and benefits of individual fluids and the best methods for administering them. The results of this review paper provide an overview of the components of an effective perioperative fluid administration plan and address both the physiologic principles and outcomes of fluid administration. We recommend that both perioperative fluid choice and therapy be individualized. Patients should receive fluid therapy guided by predefined physiologic targets. Specifically, fluids should be administered when patients require augmentation of their perfusion and are also volume responsive. This paper provides a general approach to fluid therapy and practical recommendations.

Journal ArticleDOI
TL;DR: The present review will focus on the role of serotonin (5-HT; 5-hydroxytryptamine) neurotransmission in the neuropharmacology of cocaine and related abused stimulants and proposes new approaches to guide targeted development of serotonergic ligands for the treatment of cocaine use disorder.
Abstract: Cocaine exhibits prominent abuse liability, and chronic abuse can result in cocaine use disorder with significant morbidity. Major advances have been made in delineating neurobiological mechanisms of cocaine abuse; however, effective medications to treat cocaine use disorder remain to be discovered. The present review will focus on the role of serotonin (5-HT; 5-hydroxytryptamine) neurotransmission in the neuropharmacology of cocaine and related abused stimulants. Extensive research suggests that the primary contribution of 5-HT to cocaine addiction is a consequence of interactions with dopamine (DA) neurotransmission. The literature on the neurobiological and behavioral effects of cocaine is well developed, so the focus of the review will be on cocaine with inferences made about other monoamine uptake inhibitors and releasers based on mechanistic considerations. 5-HT receptors are widely expressed throughout the brain, and several different 5-HT receptor subtypes have been implicated in mediating the effects of endogenous 5-HT on DA. However, the 5-HT2A and 5-HT2C receptors in particular have been implicated as likely candidates for mediating the influence of 5-HT in cocaine abuse as well as to traits (e.g., impulsivity) that contribute to the development of cocaine use disorder and relapse in humans. Lastly, new approaches are proposed to guide targeted development of serotonergic ligands for the treatment of cocaine use disorder.

Journal ArticleDOI
TL;DR: It is shown that transgenic mice globally expressing hCD26/DPP4 were fully permissive to MERS-CoV infection, resulting in relentless weight loss and death within days postinfection, and this new and unique transgenic mouse model will be useful for furthering knowledge of MERS pathogenesis and for the development of vaccine and treatments against MSPV.
Abstract: The emergence of Middle East respiratory syndrome-coronavirus (MERS-CoV) in the Middle East since 2012 has caused more than 900 human infections with ∼40% mortality to date. Animal models are needed for studying pathogenesis and for development of preventive and therapeutic agents against MERS-CoV infection. Nonhuman primates (rhesus macaques and marmosets) are expensive models of limited availability. Although a mouse lung infection model has been described using adenovirus vectors expressing human CD26/dipeptidyl peptidase 4 (DPP4), it is believed that a transgenic mouse model is needed for MERS-CoV research. We have developed this transgenic mouse model as indicated in this study. We show that transgenic mice globally expressing hCD26/DPP4 were fully permissive to MERS-CoV infection, resulting in relentless weight loss and death within days postinfection. High infectious virus titers were recovered primarily from the lungs and brains of mice at 2 and 4 days postinfection, respectively, whereas viral RNAs were also detected in the heart, spleen, and intestine, indicating a disseminating viral infection. Infected Tg + mice developed a progressive pneumonia, characterized by extensive inflammatory infiltration. In contrast, an inconsistent mild perivascular cuffing was the only pathological change associated with the infected brains. Moreover, infected Tg + mice were able to activate genes encoding for many antiviral and inflammatory mediators within the lungs and brains, coinciding with the high levels of viral replication. This new and unique transgenic mouse model will be useful for furthering knowledge of MERS pathogenesis and for the development of vaccine and treatments against MERS-CoV infection. IMPORTANCE Small and economical animal models are required for the controlled and extensive studies needed for elucidating pathogenesis and development of vaccines and antivirals against MERS. Mice are the most desirable small-animal species for this purpose because of availability and the existence of a thorough knowledge base, particularly of genetics and immunology. The standard small animals, mice, hamsters, and ferrets, all lack the functional MERS-CoV receptor and are not susceptible to infection. So, initial studies were done with nonhuman primates, expensive models of limited availability. A mouse lung infection model was described where a mouse adenovirus was used to transfect lung cells for receptor expression. Nevertheless, all generally agree that a transgenic mouse model expressing the DPP4 receptor is needed for MERS-CoV research. We have developed this transgenic mouse model as indicated in this study. This new and unique transgenic mouse model will be useful for furthering MERS research.

Journal ArticleDOI
TL;DR: This report quantifies, for the first time, T1 relaxivity for all 8 gadolinium chelates in common clinical use worldwide, at current relevant field strengths, in human whole blood at physiological temperature (37°C).
Abstract: OBJECTIVES Calculation of accurate T1 relaxivity (r1) values for gadolinium-based magnetic resonance contrast agents (GBCAs) is a complex process. As such, often referenced r1 values for the GBCAs at 1.5 T, 3 T, and 7 T are based on measurements obtained in media that are not clinically relevant, derived from only a small number of concentrations, or available for only a limited number of GBCAs. This study derives the r1 values of the 8 commercially available GBCAs in human whole blood at 1.5 T, 3 T, and 7 T. MATERIALS AND METHODS Eight GBCAs were serially diluted in human whole blood, at 7 concentrations from 0.0625 to 4 mM. A custom-built phantom held the dilutions in air-tight cylindrical tubes maintained at 37 ± 0.5°C by a heat-circulating system. Images were acquired using inversion recovery sequences with inversion times from 30 milliseconds to 10 seconds at 1.5 T and 3 T as well as 60 milliseconds to 5 seconds at 7 T. A custom MATLAB program was used to automate signal intensity measurements from the images acquired of the phantom. SigmaPlot was used to calculate T1 relaxation times and, finally, r1. RESULTS Measured r1 values in units of s[BULLET OPERATOR]mM at 1.5 T (3 T/7 T) were 3.9 ± 0.2 (3.4 ± 0.4/2.8 ± 0.4) for Gd-DOTA, 4.6 ± 0.2 (4.5 ± 0.3/4.2 ± 0.3) for Gd-DO3A-butrol, 4.3 ± 0.4 (3.8 ± 0.2/3.1 ± 0.4) for Gd-DTPA, 6.2 ± 0.5 (5.4 ± 0.3/4.7 ± 0.1) for Gd-BOPTA, 4.5 ± 0.1 (3.9 ± 0.2/3.7 ± 0.2) for Gd-DTPA-BMA, 4.4 ± 0.2 (4.2 ± 0.2/4.3 ± 0.2) for Gd-DTPA-BMEA, 7.2 ± 0.2 (5.5 ± 0.3/4.9 ± 0.1) for Gd-EOB-DTPA, and 4.4 ± 0.6 (3.5 ± 0.6/3.4 ± 0.1) for Gd-HP-DO3A. The agents can be stratified by relaxivity, with a significant additional dependency on field strength. CONCLUSIONS This report quantifies, for the first time, T1 relaxivity for all 8 gadolinium chelates in common clinical use worldwide, at current relevant field strengths, in human whole blood at physiological temperature (37°C). The measured r1 values differ to a small degree from previously published values, where such comparisons exist, with the current r1 measurements being that most relevant to clinical practice. The macrocyclic agents, with the exception of Gd-DO3A-butrol, have slightly lower r1 values when compared with the 2 much less stable linear agents, Gd-DTPA-BMA and Gd-DTPA-BMEA. The 2 agents with hepatobiliary excretion, Gd-EOB-DTPA and Gd-BOPTA, have, at 1.5 and 3 T, substantially higher r1 values than all other agents.

Journal ArticleDOI
TL;DR: Although treatment for mild GDM has been associated with neonatal benefits, no reduction in childhood obesity or metabolic dysfunction in the offspring of treated women was found, and only female offspring of women treated for mildGDM had lower fasting glucose.
Abstract: OBJECTIVE To evaluate whether treatment of mild gestational diabetes mellitus (GDM) confers sustained offspring health benefits, including a lower frequency of obesity. RESEARCH DESIGN AND METHODS Follow-up study of children (ages 5–10) of women enrolled in a multicenter trial of treatment versus no treatment of mild GDM. Height, weight, blood pressure, waist circumference, fasting glucose, fasting insulin, triglycerides, and HDL cholesterol were measured. RESULTS Five hundred of 905 eligible offspring (55%) were enrolled. Maternal baseline characteristics were similar between the follow-up treated and untreated groups. The frequencies of BMI ≥95th (20.8% and 22.9%) and 85th (32.6% and 38.6%) percentiles were not significantly different in treated versus untreated offspring ( P = 0.69 and P = 0.26). No associations were observed for BMI z score, log waist circumference, log triglycerides, HDL cholesterol, blood pressure, or log HOMA estimated insulin resistance (HOMA-IR). The effect of treatment was different by sex for fasting glucose and log HOMA-IR ( P for interaction = 0.002 and 0.02, respectively) but not by age-group (5–6 and 7–10 years) for any outcomes. Female offspring of treated women had significantly lower fasting glucose levels. CONCLUSIONS Although treatment for mild GDM has been associated with neonatal benefits, no reduction in childhood obesity or metabolic dysfunction in the offspring of treated women was found. However only female offspring of women treated for mild GDM had lower fasting glucose.

Journal ArticleDOI
TL;DR: The ability of radiomics to provide a quantitative, individualized measurement of patient lung tissue reaction to RT and assess RP development is demonstrated.
Abstract: Purpose To assess the relationship between radiation dose and change in a set of mathematical intensity- and texture-based features and to determine the ability of texture analysis to identify patients who develop radiation pneumonitis (RP). Methods and Materials A total of 106 patients who received radiation therapy (RT) for esophageal cancer were retrospectively identified under institutional review board approval. For each patient, diagnostic computed tomography (CT) scans were acquired before (0-168 days) and after (5-120 days) RT, and a treatment planning CT scan with an associated dose map was obtained. 32- × 32-pixel regions of interest (ROIs) were randomly identified in the lungs of each pre-RT scan. ROIs were subsequently mapped to the post-RT scan and the planning scan dose map by using deformable image registration. The changes in 20 feature values (ΔFV) between pre- and post-RT scan ROIs were calculated. Regression modeling and analysis of variance were used to test the relationships between ΔFV, mean ROI dose, and development of grade ≥2 RP. Area under the receiver operating characteristic curve (AUC) was calculated to determine each feature's ability to distinguish between patients with and those without RP. A classifier was constructed to determine whether 2- or 3-feature combinations could improve RP distinction. Results For all 20 features, a significant ΔFV was observed with increasing radiation dose. Twelve features changed significantly for patients with RP. Individual texture features could discriminate between patients with and those without RP with moderate performance (AUCs from 0.49 to 0.78). Using multiple features in a classifier, AUC increased significantly (0.59-0.84). Conclusions A relationship between dose and change in a set of image-based features was observed. For 12 features, ΔFV was significantly related to RP development. This study demonstrated the ability of radiomics to provide a quantitative, individualized measurement of patient lung tissue reaction to RT and assess RP development.

Journal ArticleDOI
10 Sep 2015-Viruses
TL;DR: The arbovirus community will benefit from the growing database of knowledge concerning these newly described viral endosymbionts, as their impacts will likely be far reaching.
Abstract: Arthropod-borne viruses (arboviruses), especially those transmitted by mosquitoes, are a significant cause of morbidity and mortality in humans and animals worldwide. Recent discoveries indicate that mosquitoes are naturally infected with a wide range of other viruses, many within taxa occupied by arboviruses that are considered insect-specific. Over the past ten years there has been a dramatic increase in the literature describing novel insect-specific virus detection in mosquitoes, which has provided new insights about viral diversity and evolution, including that of arboviruses. It has also raised questions about what effects the mosquito virome has on arbovirus transmission. Additionally, the discovery of these new viruses has generated interest in their potential use as biological control agents as well as novel vaccine platforms. The arbovirus community will benefit from the growing database of knowledge concerning these newly described viral endosymbionts, as their impacts will likely be far reaching.

Journal ArticleDOI
19 Jun 2015-Viruses
TL;DR: This review summarizes recent progress made in understanding the role of exosomes in RNA virus infections with an emphasis on their potential contribution to pathogenesis.
Abstract: Exosomes are membrane-enclosed vesicles actively released into the extracellular space, whose content reflect the physiological/pathological state of the cells they originate from. These vesicles participate in cell-to-cell communication and transfer of biologically active proteins, lipids, and RNAs. Their role in viral infections is just beginning to be appreciated. RNA viruses are an important class of pathogens and affect millions of people worldwide. Recent studies on Human Immunodeficiency Virus (HIV), Hepatitis C Virus (HCV), human T-cell lymphotropic virus (HTLV), and Dengue Virus (DENV) have demonstrated that exosomes released from infected cells harbor and deliver many regulatory factors including viral RNA and proteins, viral and cellular miRNA, and other host functional genetic elements to neighboring cells, helping to establish productive infections and modulating cellular responses. Exosomes can either spread or limit an infection depending on the type of pathogen and target cells, and can be exploited as candidates for development of antiviral or vaccine treatments. This review summarizes recent progress made in understanding the role of exosomes in RNA virus infections with an emphasis on their potential contribution to pathogenesis.

Journal ArticleDOI
TL;DR: This study shows that formulation of SARS-CoV spike protein or inactivated whole-virus vaccines with novel delta inulin-based polysaccharide adjuvants enhances neutralizing-antibody titers and protection against clinical disease but at the same time also protects against development of lung eosinophilic immunopathology.
Abstract: Although the severe acute respiratory syndrome-associated coronavirus (SARS-CoV) epidemic was controlled by nonvaccine measures, coronaviruses remain a major threat to human health The design of optimal coronavirus vaccines therefore remains a priority Such vaccines present major challenges: coronavirus immunity often wanes rapidly, individuals needing to be protected include the elderly, and vaccines may exacerbate rather than prevent coronavirus lung immunopathology To address these issues, we compared in a murine model a range of recombinant spike protein or inactivated whole-virus vaccine candidates alone or adjuvanted with either alum, CpG, or Advax, a new delta inulin-based polysaccharide adjuvant While all vaccines protected against lethal infection, addition of adjuvant significantly increased serum neutralizing-antibody titers and reduced lung virus titers on day 3 postchallenge Whereas unadjuvanted or alum-formulated vaccines were associated with significantly increased lung eosinophilic immunopathology on day 6 postchallenge, this was not seen in mice immunized with vaccines formulated with delta inulin adjuvant Protection against eosinophilic immunopathology by vaccines containing delta inulin adjuvants correlated better with enhanced T-cell gamma interferon (IFN-γ) recall responses rather than reduced interleukin-4 (IL-4) responses, suggesting that immunopathology predominantly reflects an inadequate vaccine-induced Th1 response This study highlights the critical importance for development of effective and safe coronavirus vaccines of selection of adjuvants based on the ability to induce durable IFN-γ responses Importance Coronaviruses such as SARS-CoV and Middle East respiratory syndrome-associated coronavirus (MERS-CoV) cause high case fatality rates and remain major human public health threats, creating a need for effective vaccines While coronavirus antigens that induce protective neutralizing antibodies have been identified, coronavirus vaccines present a unique problem in that immunized individuals when infected by virus can develop lung eosinophilic pathology, a problem that is further exacerbated by the formulation of SARS-CoV vaccines with alum adjuvants This study shows that formulation of SARS-CoV spike protein or inactivated whole-virus vaccines with novel delta inulin-based polysaccharide adjuvants enhances neutralizing-antibody titers and protection against clinical disease but at the same time also protects against development of lung eosinophilic immunopathology It also shows that immunity achieved with delta inulin adjuvants is long-lived, thereby overcoming the natural tendency for rapidly waning coronavirus immunity Thus, delta inulin adjuvants may offer a unique ability to develop safer and more effective coronavirus vaccines

Journal ArticleDOI
TL;DR: All the species tested here were susceptible to oral infection of ZIKV but only a low proportion of Ae.
Abstract: Zika virus (ZIKV; genus Flavivirus, family Flaviviridae) is an emerging virus of medical importance maintained in a zoonotic cycle between arboreal Aedes spp. mosquitoes and nonhuman primates in African and Asian forests. Serological evidence and virus isolations have demonstrated widespread distribution of the virus in Senegal. Several mosquito species have been found naturally infected by ZIKV but little is known about their vector competence. We assessed the vector competence of Ae. aegypti from Kedougou and Dakar, Ae. unilineatus, Ae. vittatus and Ae. luteocephalus from Kedougou in Senegal for 6 ZIKV strains using experimental oral infection. Fully engorged female mosquitoes were maintained in an environmental chamber set at 27 ± 1 °C and 80 ± 5 % Relative humidity. At day 5, 10 and 15 days post infection (dpi), individual mosquito saliva, legs/wings and bodies were tested for the presence of ZIKV genome using real time RT-PCR to estimate the infection, dissemination, and transmission rates. All the species tested were infected by all viral strains but only Ae. vittatus and Ae. luteocephalus were potentially capable of transmitting ZIKV after 15 dpi with 20 and 50 % of mosquitoes, respectively, delivering epidemic (HD 78788) and prototype (MR 766) ZIKV strains in saliva. All the species tested here were susceptible to oral infection of ZIKV but only a low proportion of Ae. vittatus and Ae. luteocephalus had the viral genome in their saliva and thus the potential to transmit the virus. Further investigations are needed on the vector competence of other species associated with ZIKV for better understanding of the ecology and epidemiology of this virus in Senegal.

Journal ArticleDOI
TL;DR: This review discusses the recent progress reported in studies of distinct types of regulatory immune cells in the gut, including intestinal intraepithelial lymphocytes, Foxp3+ regulatory T cells, regulatory B cells, alternatively activated macrophages, dendritic cells, and innate lymphoid cells and how dysfunction of this immune regulatory system contributes to intestinal diseases such as IBD.

Journal ArticleDOI
TL;DR: Evidence is provided of a critical role of FGF14 in maintaining presynaptic function at PF-Purkinje neuron synapses highlighting critical target mechanisms to recapitulate the complexity of the SCA27 disease.
Abstract: Genetically inherited mutations in the fibroblast growth factor 14 (FGF14) gene lead to spinocerebellar ataxia type 27 (SCA27), an autosomal dominant disorder characterized by severe heterogeneous motor and cognitive impairments Consistently, genetic deletion of Fgf14 in Fgf14-/- mice recapitulates salient features of the SCA27 human disease In vitro molecular studies in cultured neurons indicate that the FGF14F145S SCA27 allele acts as a dominant negative mutant suppressing the FGF14 wild type function and resulting in inhibition of voltage-gated Na+ and Ca2+ channels To gain insights in the cerebellar deficits in the animal model of the human disease, we applied whole-cell voltage-clamp in the acute cerebellar slice preparation to examine the properties of parallel fibers (PF) to Purkinje neuron synapses in Fgf14-/- mice and wild type littermates We found that the AMPA receptor-mediated excitatory postsynaptic currents evoked by PF stimulation (PF-EPSCs) were significantly reduced in Fgf14-/- animals, while short-term plasticity, measured as paired-pulse facilitation (PPF), was enhanced Measuring Sr2+-induced release of quanta from stimulated synapses, we found that the size of the PF-EPSCs was unchanged, ruling out a postsynaptic deficit This phenotype was corroborated by decreased expression of VGLUT1, a specific presynaptic marker at PF-Purkinje neuron synapses We next examined the mGluR1 receptor-induced response (mGluR1-EPSC) that under normal conditions requires a gradual build-up of glutamate concentration in the synaptic cleft, and found no changes in these responses in Fgf14-/- mice These results provide evidence of a critical role of FGF14 in maintaining presynaptic function at PF-Purkinje neuron synapses highlighting critical target mechanisms to recapitulate the complexity of the SCA27 disease