scispace - formally typeset
Search or ask a question
Institution

University of Texas Medical Branch

EducationGalveston, Texas, United States
About: University of Texas Medical Branch is a education organization based out in Galveston, Texas, United States. It is known for research contribution in the topics: Population & Virus. The organization has 22033 authors who have published 38268 publications receiving 1517502 citations. The organization is also known as: The University of Texas Medical Branch at Galveston & UTMB.


Papers
More filters
Journal ArticleDOI
TL;DR: Intracellular current-clamp recordings obtained from neurons of the basolateral nucleus of the amygdala (BLA) suggest that EPSP amplitude and duration are determined, in part, by the shunting of membrane conductance caused by a concomitant IPSP.
Abstract: 1 Intracellular recording techniques were used to characterize synaptic inhibitory postsynaptic potentials (IPSPs) recorded from neurons of the basolateral nucleus of the amygdala (BLA) Bipolar e

304 citations

Journal ArticleDOI
TL;DR: It is concluded that chemokines are produced in the airways, and that an increased recovery of MCP-1, RANTES, and MIP-1alpha is observed in allergic asthmatic patients.
Abstract: Chemokines are cytokines that induce chemotaxis of inflammatory cells. We studied the presence of chemokines in bronchoalveolar lavage fluid (BALF) obtained from nine allergic asthmatic patients and six nonsmoking normal individuals. The cells were pelleted, and ribonucleic acid (RNA) was extracted by using RNAzol B. BALF was assayed for monocyte chemoattractant protein-1 (MCP-1), regulated upon activation in normal T cells, expressed, probably secreted (RANTES), macrophage inflammatory protein-1alpha (MIP-1alpha) and interleukin-8 (IL-8) by enzyme-linked immunosorbent assay (ELISA). The levels of MCP-1, RANTES, and MIP-1alpha were significantly higher in the asthma patients than in the control subjects (p<0.04). The concentrations of RANTES and MCP-1 correlated with the lymphocyte count in the BAL specimens (r = 0.61 and 0.68, respectively). BALF showed eosinophil chemotactic activity in vitro that was blocked by anti-RANTES and anti-MCP-3 antibodies. The total cellular RNA was reverse-transcribed and the complementary deoxyribonucleic acid (cDNA) was amplified with the polymerase chain reaction (PCR) for MCP-1, MCP-3, RANTES, MIP-1alpha, IL-8, and beta-actin. We found that messenger ribonucleic acids (mRNAs) for MCP-1, MCP-3, RANTES, MIP-1alpha, and IL-8 were produced by BAL cells from most asthmatic and normal subjects. We conclude that chemokines are produced in the airways, and that an increased recovery of MCP-1, RANTES, and MIP-1alpha is observed in allergic asthmatic patients.

304 citations

Journal ArticleDOI
TL;DR: The C/EBP isoforms exhibit differential mechanisms in their responses to LPS in various tissues and are likely to play an important role in mediating the transcriptional activation of genes involved in the acute phase response.

303 citations

Journal ArticleDOI
TL;DR: Analysis of full-length viral sequences reveals three independent events of virus exposure to Ae.
Abstract: Since 2004, several million indigenous cases of Chikungunya virus disease occurred in Africa, the Indian Ocean, India, Asia and, recently, Europe. The virus, usually transmitted by Aedes aegypti mosquitoes, has now repeatedly been associated with a new vector, Ae. Albopictus. Analysis of full-length viral sequences reveals three independent events of virus exposure to Ae. Albopictus, each followed by the acquisition of a single adaptive mutation providing selective advantage for transmission by this mosquito. This disconcerting and current unique example of "evolutionary convergence" occurring in nature illustrates rapid pathogen adaptation to ecological perturbation, driven directly as a consequence of human activities.

303 citations

Journal ArticleDOI
TL;DR: This review highlights recent advances in the development of biologically active spirooxindoles for their antiviral potential, primarily focusing on the structure-activity relationships (SARs) and modes of action, as well as future directions to achieve more potent analogues toward a viable antiviral therapy.
Abstract: Antiviral therapeutics with profiles of high potency, low resistance, panserotype, and low toxicity remain challenging, and obtaining such agents continues to be an active area of therapeutic development. Due to their unique three-dimensional structural features, spirooxindoles have been identified as privileged chemotypes for antiviral drug development. Among them, spiro-pyrazolopyridone oxindoles have been recently reported as potent inhibitors of dengue virus NS4B, leading to the discovery of an orally bioavailable preclinical candidate (R)-44 with excellent in vivo efficacy in a dengue viremia mouse model. This review highlights recent advances in the development of biologically active spirooxindoles for their antiviral potential, primarily focusing on the structure–activity relationships (SARs) and modes of action, as well as future directions to achieve more potent analogues toward a viable antiviral therapy.

303 citations


Authors

Showing all 22143 results

NameH-indexPapersCitations
Stuart H. Orkin186715112182
Eric R. Kandel184603113560
John C. Morris1831441168413
Joseph Biederman1791012117440
Richard A. Gibbs172889249708
Timothy A. Springer167669122421
Gabriel N. Hortobagyi1661374104845
Roberto Romero1511516108321
Charles B. Nemeroff14997990426
Peter J. Schwartz147647107695
Clifford J. Woolf14150986164
Thomas J. Smith1401775113919
Edward C. Holmes13882485748
Jun Lu135152699767
Henry T. Lynch13392586270
Network Information
Related Institutions (5)
Baylor College of Medicine
94.8K papers, 5M citations

97% related

Johns Hopkins University School of Medicine
79.2K papers, 4.7M citations

97% related

University of Alabama at Birmingham
86.7K papers, 3.9M citations

97% related

National Institutes of Health
297.8K papers, 21.3M citations

97% related

University of California, San Francisco
186.2K papers, 12M citations

97% related

Performance
Metrics
No. of papers from the Institution in previous years
YearPapers
202330
2022196
20211,616
20201,487
20191,298
20181,152