scispace - formally typeset
Search or ask a question
Institution

University of Texas Southwestern Medical Center

HealthcareDallas, Texas, United States
About: University of Texas Southwestern Medical Center is a healthcare organization based out in Dallas, Texas, United States. It is known for research contribution in the topics: Population & Cancer. The organization has 39107 authors who have published 75242 publications receiving 4497256 citations. The organization is also known as: UT Southwestern & UT Southwestern Medical School.


Papers
More filters
Journal ArticleDOI
16 Aug 1996-Science
TL;DR: Cardiac Na+,Ca2+ exchange is activated by a mechanism that requires hydrolysis of adenosine triphosphate but is not mediated by protein kinases, and PIP2 may be an important regulator of both ion transporters and channels.
Abstract: Cardiac Na+,Ca2+ exchange is activated by a mechanism that requires hydrolysis of adenosine triphosphate (ATP) but is not mediated by protein kinases. In giant cardiac membrane patches, ATP acted to generate phosphatidylinositol-4,5-bisphosphate (PIP2) from phosphatidylinositol (PI). The action of ATP was abolished by a PI-specific phospholipase C (PLC) and recovered after addition of exogenous PI; it was reversed by a PIP2-specific PLC; and it was mimicked by exogenous PIP2. High concentrations of free Ca2+ (5 to 20 microM) accelerated reversal of the ATP effect, and PLC activity in myocyte membranes was activated with a similar Ca2+ dependence. Aluminum reversed the ATP effect by binding with high affinity to PIP2. ATP-inhibited potassium channels (KATP) were also sensitive to PIP2, whereas Na+,K+ pumps and Na+ channels were not. Thus, PIP2 may be an important regulator of both ion transporters and channels.

674 citations

Journal ArticleDOI
TL;DR: The hallmarks of acute and chronic inflammatory responses in the CNS are reviewed, the reasons why microglial activation represents a convergence point for diverse stimuli that may promote or compromise neuronal survival, and the epidemiologic, pharmacologic and genetic evidence implicating neuroinflammation in the pathophysiology of several neurodegenerative diseases are reviewed.
Abstract: While peripheral immune access to the central nervous system (CNS) is restricted and tightly controlled, the CNS is capable of dynamic immune and inflammatory responses to a variety of insults. Infections, trauma, stroke, toxins and other stimuli are capable of producing an immediate and short lived activation of the innate immune system within the CNS. This acute neuroinflammatory response includes activation of the resident immune cells (microglia) resulting in a phagocytic phenotype and the release of inflammatory mediators such as cytokines and chemokines. While an acute insult may trigger oxidative and nitrosative stress, it is typically short-lived and unlikely to be detrimental to long-term neuronal survival. In contrast, chronic neuroinflammation is a long-standing and often self-perpetuating neuroinflammatory response that persists long after an initial injury or insult. Chronic neuroinflammation includes not only long-standing activation of microglia and subsequent sustained release of inflammatory mediators, but also the resulting increased oxidative and nitrosative stress. The sustained release of inflammatory mediators works to perpetuate the inflammatory cycle, activating additional microglia, promoting their proliferation, and resulting in further release of inflammatory factors. Neurodegenerative CNS disorders, including multiple sclerosis (MS), Alzheimer's disease (AD), Parkinson's disease (PD), Huntington's disease (HD), amyotrophic lateral sclerosis (ALS), tauopathies, and age-related macular degeneration (ARMD), are associated with chronic neuroinflammation and elevated levels of several cytokines. Here we review the hallmarks of acute and chronic inflammatory responses in the CNS, the reasons why microglial activation represents a convergence point for diverse stimuli that may promote or compromise neuronal survival, and the epidemiologic, pharmacologic and genetic evidence implicating neuroinflammation in the pathophysiology of several neurodegenerative diseases.

673 citations

Journal ArticleDOI
03 Sep 2004-Science
TL;DR: The molecule has allowed a temporal, unbiased evaluation of the roles that IAP proteins play during signaling from TRAIL and TNF receptors and is a lead structure for the development of IAP antagonists potentially useful as therapy for cancer and inflammatory diseases.
Abstract: We describe the synthesis and properties of a small molecule mimic of Smac, a pro-apoptotic protein that functions by relieving inhibitor-of-apoptosis protein (IAP)-mediated suppression of caspase activity The compound binds to X chromosome- encoded IAP (XIAP), cellular IAP 1 (cIAP-1), and cellular IAP 2 (cIAP-2) and synergizes with both tumor necrosis factor alpha (TNFalpha) and TNF-related apoptosis-inducing ligand (TRAIL) to potently induce caspase activation and apoptosis in human cancer cells The molecule has allowed a temporal, unbiased evaluation of the roles that IAP proteins play during signaling from TRAIL and TNF receptors The compound is also a lead structure for the development of IAP antagonists potentially useful as therapy for cancer and inflammatory diseases

672 citations

Journal ArticleDOI
21 Oct 1999-Nature
TL;DR: It is reported that Salmonella is transported from the gastrointestinal tract to the bloodstream by CD18-expressing phagocytes, and thatCD18-deficient mice are resistant to dissemination ofSalmonella to the liver and spleen after oral administration.
Abstract: Specialized epithelia known as M cells overlying the lymphoid follicles of Peyer's patches are important in the mucosal immune system, but also provide a portal of entry for pathogens such as Salmonella typhimurium, Mycobacterium bovis, Shigella flexneri, Yersinia enterocolitica and reoviruses1,2,3,4. Penetration of intestinal M cells and epithelial cells by Salmonella typhimurium requires the invasion genes of Salmonella Pathogenicity Island 1 (SPI1)3,5,6,7,8,9. SPI1-deficient S. typhimurium strains gain access to the spleen following oral administration and cause lethal infection in mice5 without invading M cells3,9 or localizing in Peyer's patches10, which indicates that Salmonella uses an alternative strategy to disseminate from the gastrointestinal tract. Here we report that Salmonella is transported from the gastrointestinal tract to the bloodstream by CD18-expressing phagocytes, and that CD18-deficient mice are resistant to dissemination of Salmonella to the liver and spleen after oral administration. This CD18-dependent pathway of extraintestinal dissemination may be important for the development of systemic immunity to gastrointestinal pathogens, because oral challenge with SPI1-deficient S. typhimurium elicits a specific systemic IgG humoral immune response, despite an inability to stimulate production of specific mucosal IgA.

671 citations

Journal ArticleDOI
07 Aug 1997-Nature
TL;DR: It is proposed that Rim serves as a Rab3-dependent regulator of synaptic-vesicle fusion by forming a GTP-dependent complex between synaptic plasma membranes and docked synaptic vesicles.
Abstract: Rab3 is a neuronal GTP-binding protein that regulates fusion of synaptic vesicles and is essential for long-term potentiation of hippocampal mossy fibre synapses1,2,3,4,5 More than thirty Rab GTP-binding proteins are known to function in diverse membrane transport pathways, although their mechanisms of action are unclear We have now identified a putative Rab3-effector protein called Rim Rim is composed of an amino-terminal zinc-finger motif and carboxy-terminal PDZ and C2 domains It binds only to GTP (but not to GDP)-complexed Rab3, and interacts with no other Rab protein tested There is enrichment of Rab3 and Rim in neurons, where they have complementary distributions Rab3 is found only on synaptic vesicles, whereas Rim is localized to presynaptic active zones in conventional synapses, and to presynaptic ribbons in ribbon synapses Transfection of PC12 cells with the amino-terminal domains of Rim greatly enhances regulated exocytosis in a Rab3-dependent manner We propose that Rim serves as a Rab3-dependent regulator of synaptic-vesicle fusion by forming a GTP-dependent complex between synaptic plasma membranes and docked synaptic vesicles

671 citations


Authors

Showing all 39410 results

NameH-indexPapersCitations
Eugene Braunwald2301711264576
Joseph L. Goldstein207556149527
Eric N. Olson206814144586
Craig B. Thompson195557173172
Thomas C. Südhof191653118007
Scott M. Grundy187841231821
Michael S. Brown185422123723
Eric Boerwinkle1831321170971
Jiaguo Yu178730113300
John J.V. McMurray1781389184502
Eric J. Nestler178748116947
John D. Minna169951106363
Yuh Nung Jan16246074818
Andrew P. McMahon16241590650
Elliott M. Antman161716179462
Network Information
Related Institutions (5)
Johns Hopkins University School of Medicine
79.2K papers, 4.7M citations

98% related

University of California, San Francisco
186.2K papers, 12M citations

98% related

Baylor College of Medicine
94.8K papers, 5M citations

98% related

National Institutes of Health
297.8K papers, 21.3M citations

98% related

Brigham and Women's Hospital
110.5K papers, 6.8M citations

97% related

Performance
Metrics
No. of papers from the Institution in previous years
YearPapers
2023114
2022406
20215,247
20204,674
20194,094
20183,400