scispace - formally typeset
Search or ask a question
Institution

University of Texas Southwestern Medical Center

HealthcareDallas, Texas, United States
About: University of Texas Southwestern Medical Center is a healthcare organization based out in Dallas, Texas, United States. It is known for research contribution in the topics: Population & Cancer. The organization has 39107 authors who have published 75242 publications receiving 4497256 citations. The organization is also known as: UT Southwestern & UT Southwestern Medical School.


Papers
More filters
Journal ArticleDOI
TL;DR: In patients with advanced IDH1‐mutated relapsed or refractory AML, ivosidenib at a dose of 500 mg daily was associated with a low frequency of grade 3 or higher treatment‐related adverse events and with transfusion independence, durable remissions, and molecular remissions in some patients with complete remission.
Abstract: Background Mutations in the gene encoding isocitrate dehydrogenase 1 (IDH1) occur in 6 to 10% of patients with acute myeloid leukemia (AML). Ivosidenib (AG-120) is an oral, targeted, small-molecule inhibitor of mutant IDH1. Methods We conducted a phase 1 dose-escalation and dose-expansion study of ivosidenib monotherapy in IDH1-mutated AML. Safety and efficacy were assessed in all treated patients. The primary efficacy population included patients with relapsed or refractory AML receiving 500 mg of ivosidenib daily with at least 6 months of follow-up. Results Overall, 258 patients received ivosidenib and had safety outcomes assessed. Among patients with relapsed or refractory AML (179 patients), treatment-related adverse events of grade 3 or higher that occurred in at least 3 patients were prolongation of the QT interval (in 7.8% of the patients), the IDH differentiation syndrome (in 3.9%), anemia (in 2.2%), thrombocytopenia or a decrease in the platelet count (in 3.4%), and leukocytosis (in 1.7%...

1,004 citations

Journal ArticleDOI
TL;DR: The aim of this study was to improve the neuropathologic recognition and provide criteria for the pathological diagnosis in the neurodegenerative diseases grouped as frontotemporal lobar degeneration (FTLD) and incorporate up-to-date neuropathology in the light of recent immunohistochemical, biochemical, and genetic advances.
Abstract: The aim of this study was to improve the neuropathologic recognition and provide criteria for the pathological diagnosis in the neurodegenerative diseases grouped as frontotemporal lobar degeneration (FTLD); revised criteria are proposed. Recent advances in molecular genetics, biochemistry, and neuropathology of FTLD prompted the Midwest Consortium for Frontotemporal Lobar Degeneration and experts at other centers to review and revise the existing neuropathologic diagnostic criteria for FTLD. The proposed criteria for FTLD are based on existing criteria, which include the tauopathies [FTLD with Pick bodies, corticobasal degeneration, progressive supranuclear palsy, sporadic multiple system tauopathy with dementia, argyrophilic grain disease, neurofibrillary tangle dementia, and FTD with microtubule-associated tau (MAPT) gene mutation, also called FTD with parkinsonism linked to chromosome 17 (FTDP-17)]. The proposed criteria take into account new disease entities and include the novel molecular pathology, TDP-43 proteinopathy, now recognized to be the most frequent histological finding in FTLD. TDP-43 is a major component of the pathologic inclusions of most sporadic and familial cases of FTLD with ubiquitin-positive, tau-negative inclusions (FTLD-U) with or without motor neuron disease (MND). Molecular genetic studies of familial cases of FTLD-U have shown that mutations in the progranulin (PGRN) gene are a major genetic cause of FTLD-U. Mutations in valosin-containing protein (VCP) gene are present in rare familial forms of FTD, and some families with FTD and/or MND have been linked to chromosome 9p, and both are types of FTLD-U. Thus, familial TDP-43 proteinopathy is associated with defects in multiple genes, and molecular genetics is required in these cases to correctly identify the causative gene defect. In addition to genetic heterogeneity amongst the TDP-43 proteinopathies, there is also neuropathologic heterogeneity and there is a close relationship between genotype and FTLD-U subtype. In addition to these recent significant advances in the neuropathology of FTLD-U, novel FTLD entities have been further characterized, including neuronal intermediate filament inclusion disease. The proposed criteria incorporate up-to-date neuropathology of FTLD in the light of recent immunohistochemical, biochemical, and genetic advances. These criteria will be of value to the practicing neuropathologist and provide a foundation for clinical, clinico-pathologic, mechanistic studies and in vivo models of pathogenesis of FTLD.

1,000 citations

Journal ArticleDOI
TL;DR: These results identify a molecular mechanism by which different patterns of motor nerve activity promote selective changes in gene expression to establish the specialized characteristics of slow and fast myofibers.
Abstract: Slow- and fast-twitch myofibers of adult skeletal muscles express unique sets of muscle-specific genes, and these distinctive programs of gene expression are controlled by variations in motor neuron activity. It is well established that, as a consequence of more frequent neural stimulation, slow fibers maintain higher levels of intracellular free calcium than fast fibers, but the mechanisms by which calcium may function as a messenger linking nerve activity to changes in gene expression in skeletal muscle have been unknown. Here, fiber-type-specific gene expression in skeletal muscles is shown to be controlled by a signaling pathway that involves calcineurin, a cyclosporin-sensitive, calcium-regulated serine/threonine phosphatase. Activation of calcineurin in skeletal myocytes selectively up-regulates slow-fiber-specific gene promoters. Conversely, inhibition of calcineurin activity by administration of cyclosporin A to intact animals promotes slow-to-fast fiber transformation. Transcriptional activation of slow-fiber-specific transcription appears to be mediated by a combinatorial mechanism involving proteins of the NFAT and MEF2 families. These results identify a molecular mechanism by which different patterns of motor nerve activity promote selective changes in gene expression to establish the specialized characteristics of slow and fast myofibers.

997 citations

Journal ArticleDOI
TL;DR: The developed system for the inducible, permanent labeling of mature adipocytes that is called the AdipoChaser mouse and results highlight the extensive differences in adipogenic potential in various fat depots.
Abstract: White adipose tissue displays high plasticity. We developed a system for the inducible, permanent labeling of mature adipocytes that we called the AdipoChaser mouse. We monitored adipogenesis during development, high-fat diet (HFD) feeding and cold exposure. During cold-induced 'browning' of subcutaneous fat, most 'beige' adipocytes stem from de novo-differentiated adipocytes. During HFD feeding, epididymal fat initiates adipogenesis after 4 weeks, whereas subcutaneous fat undergoes hypertrophy for a period of up to 12 weeks. Gonadal fat develops postnatally, whereas subcutaneous fat develops between embryonic days 14 and 18. Our results highlight the extensive differences in adipogenic potential in various fat depots.

997 citations

Journal ArticleDOI
TL;DR: The proportion of women who attempt vaginal delivery after prior cesarean delivery has decreased largely because of concern about safety, and the absolute and relative risks associated with a trial of labor in women with a history of cesAREan delivery are uncertain.
Abstract: background The proportion of women who attempt vaginal delivery after prior cesarean delivery has decreased largely because of concern about safety The absolute and relative risks associated with a trial of labor in women with a history of cesarean delivery, as compared with elective repeated cesarean delivery without labor, are uncertain

997 citations


Authors

Showing all 39410 results

NameH-indexPapersCitations
Eugene Braunwald2301711264576
Joseph L. Goldstein207556149527
Eric N. Olson206814144586
Craig B. Thompson195557173172
Thomas C. Südhof191653118007
Scott M. Grundy187841231821
Michael S. Brown185422123723
Eric Boerwinkle1831321170971
Jiaguo Yu178730113300
John J.V. McMurray1781389184502
Eric J. Nestler178748116947
John D. Minna169951106363
Yuh Nung Jan16246074818
Andrew P. McMahon16241590650
Elliott M. Antman161716179462
Network Information
Related Institutions (5)
Johns Hopkins University School of Medicine
79.2K papers, 4.7M citations

98% related

University of California, San Francisco
186.2K papers, 12M citations

98% related

Baylor College of Medicine
94.8K papers, 5M citations

98% related

National Institutes of Health
297.8K papers, 21.3M citations

98% related

Brigham and Women's Hospital
110.5K papers, 6.8M citations

97% related

Performance
Metrics
No. of papers from the Institution in previous years
YearPapers
2023114
2022406
20215,247
20204,674
20194,094
20183,400