scispace - formally typeset
Search or ask a question
Institution

University of Texas Southwestern Medical Center

HealthcareDallas, Texas, United States
About: University of Texas Southwestern Medical Center is a healthcare organization based out in Dallas, Texas, United States. It is known for research contribution in the topics: Population & Cancer. The organization has 39107 authors who have published 75242 publications receiving 4497256 citations. The organization is also known as: UT Southwestern & UT Southwestern Medical School.
Topics: Population, Cancer, Medicine, Gene, Receptor


Papers
More filters
Journal ArticleDOI
TL;DR: It is concluded that stearic acid appears to be as effective as oleic acid in lowering plasma cholesterol levels when either replaces palmitic Acid in the diet.
Abstract: We studied the metabolic effects of stearic acid (18:0) on plasma lipoprotein levels in 11 subjects during three dietary periods of three weeks each. The three liquid-formula diets, which were used in random order, were high in palmitic acid (16:0), stearic acid, and oleic acid (18:1), respectively. Caloric intakes were the same during the three periods. As compared with the values observed when the subjects were on the high-palmitic-acid diet, plasma total cholesterol decreased by an average of 14 percent during consumption of the high-stearic-acid diet (P less than 0.005) and by 10 percent during consumption of the high-oleic-acid diet (P less than 0.02). Low-density lipoprotein cholesterol levels fell by 21 percent in subjects on the high-stearic-acid diet (P less than 0.005) and by 15 percent in subjects on the high-oleic-acid diet (P less than 0.005). No significant differences were observed in the plasma levels of triglycerides or high-density lipoprotein cholesterol among the three diets. Measurements of the intestinal absorption of palmitic, stearic, and oleic acids revealed essentially complete absorption of each during the three dietary periods. The oleic acid content of plasma triglycerides and cholesteryl esters increased significantly during the high-stearic-acid period, suggesting that stearic acid is rapidly converted to oleic acid. We conclude that stearic acid appears to be as effective as oleic acid in lowering plasma cholesterol levels when either replaces palmitic acid in the diet.

906 citations

Journal ArticleDOI
21 Jul 1988-Nature
TL;DR: The results show that both types of TH cells induce the secretion of IgM and IgG3, whereas clones of TH1 and TH2 cells specifically induce antigen-specific B cells to secrete IgG2a and Igg1, respectively.
Abstract: The regulation of the subclass of immunoglobulin secreted by B cells has been studied in vitro in polyclonal systems using mitogens, such as lipopolysaccharide (LPS), to bypass the requirement for cognate interaction between antigen-specific T and B cells. In these systems, interleukin-(IL)-4 induces the secretion of IgG1 (ref. 1) and IgE (ref. 2); IL-5 enhances the secretion of IgA, and interferon-gamma (IFN-gamma) enhances the secretion of IgG2a (ref. 5). Clones of murine TH cells can be divided into two subsets, TH1 and TH2 (ref. 6). Both subsets synthesize IL-3 and granulocyte-monocyte colony-stimulating factor (GM-CSF), but only TH1 clones produce IL-2, IFN-gamma, and lymphotoxin (LT) and TH2 clones produce IL-4 and IL-5 (ref. 7). We have examined the role of clones of antigen-specific TH1 and TH2 cells in the regulation of the subclasses of IgG antibody secreted by antigen-specific B cells. Our results show that both types of TH cells induce the secretion of IgM and IgG3, whereas clones of TH1 and TH2 cells specifically induce antigen-specific B cells to secrete IgG2a and IgG1, respectively. We also demonstrate that regulation of commitment to the secretion of a particular IgG isotype occurs in two distinct stages: cognate interaction between T and B cells and interaction between T-cell-derived lymphokines and B cells.

905 citations

Journal ArticleDOI
TL;DR: It is demonstrated that the short-term effects of estrogen central to cardiovascular physiology are mediated by ERalpha functioning in a novel, nongenomic manner to activate eNOS via MAP kinase-dependent mechanisms.
Abstract: Estrogen is an important vasoprotective molecule that causes the rapid dilation of blood vessels by activating endothelial nitric oxide synthase (eNOS) through an unknown mechanism. In studies of intact ovine endothelial cells, 17beta-estradiol (E2) caused acute (five-minute) activation of eNOS that was unaffected by actinomycin D but was fully inhibited by concomitant acute treatment with specific estrogen receptor (ER) antagonists. Overexpression of the known transcription factor ERalpha led to marked enhancement of the acute response to E2, and this was blocked by ER antagonists, was specific to E2, and required the ERalpha hormone-binding domain. In addition, the acute response of eNOS to E2 was reconstituted in COS-7 cells cotransfected with wild-type ERalpha and eNOS, but not by transfection with eNOS alone. Furthermore, the inhibition of tyrosine kinases or mitogen-activated protein (MAP) kinase kinase prevented the activation of eNOS by E2, and E2 caused rapid ER-dependent activation of MAP kinase. These findings demonstrate that the short-term effects of estrogen central to cardiovascular physiology are mediated by ERalpha functioning in a novel, nongenomic manner to activate eNOS via MAP kinase-dependent mechanisms.

904 citations

Journal ArticleDOI
01 Oct 1999-Neuron
TL;DR: It is shown that Reelin binds directly and specifically to the ectodomains of VLDLR and ApoER2 in vitro and that blockade of V LDLR and apoE receptor 2 correlates with loss of Reelin-induced tyrosine phosphorylation of Disabled-1 in cultured primary embryonic neurons.

903 citations

Journal ArticleDOI
TL;DR: In the era of intrapartum chemoprophylaxis to reduce GBS, rates of EO infection have declined but reflect a continued burden of disease, suggesting that Escherichia coli is an important EO pathogen.
Abstract: BACKGROUND: Guidelines for prevention of group B streptococcal (GBS) infection have successfully reduced early onset (EO) GBS disease. Study results suggest that Escherichia coli is an important EO pathogen. OBJECTIVE: To determine EO infection rates, pathogens, morbidity, and mortality in a national network of neonatal centers. METHODS: Infants with EO infection were identified by prospective surveillance at Eunice Kennedy Shriver National Institute of Child Health and Human Development Neonatal Network centers. Infection was defined by positive culture results for blood and cerebrospinal fluid obtained from infants aged ≤72 hours plus treatment with antibiotic therapy for ≥5 days. Mother and infant characteristics, treatments, and outcomes were studied. Numbers of cases and total live births (LBs) were used to calculate incidence. RESULTS: Among 396 586 LBs (2006–2009), 389 infants developed EO infection (0.98 cases per 1000 LBs). Infection rates increased with decreasing birth weight. GBS (43%, 0.41 per 1000 LBs) and E coli (29%, 0.28 per 1000 LBs) were most frequently isolated. Most infants with GBS were term (73%); 81% with E coli were preterm. Mothers of 67% of infected term and 58% of infected preterm infants were screened for GBS, and results were positive for 25% of those mothers. Only 76% of mothers with GBS colonization received intrapartum chemoprophylaxis. Although 77% of infected infants required intensive care, 20% of term infants were treated in the normal newborn nursery. Sixteen percent of infected infants died, most commonly with E coli infection (33%). CONCLUSION: In the era of intrapartum chemoprophylaxis to reduce GBS, rates of EO infection have declined but reflect a continued burden of disease. GBS remains the most frequent pathogen in term infants, and E coli the most significant pathogen in preterm infants. Missed opportunities for GBS prevention continue. Prevention of E coli sepsis, especially among preterm infants, remains a challenge.

903 citations


Authors

Showing all 39410 results

NameH-indexPapersCitations
Eugene Braunwald2301711264576
Joseph L. Goldstein207556149527
Eric N. Olson206814144586
Craig B. Thompson195557173172
Thomas C. Südhof191653118007
Scott M. Grundy187841231821
Michael S. Brown185422123723
Eric Boerwinkle1831321170971
Jiaguo Yu178730113300
John J.V. McMurray1781389184502
Eric J. Nestler178748116947
John D. Minna169951106363
Yuh Nung Jan16246074818
Andrew P. McMahon16241590650
Elliott M. Antman161716179462
Network Information
Related Institutions (5)
Johns Hopkins University School of Medicine
79.2K papers, 4.7M citations

98% related

University of California, San Francisco
186.2K papers, 12M citations

98% related

Baylor College of Medicine
94.8K papers, 5M citations

98% related

National Institutes of Health
297.8K papers, 21.3M citations

98% related

Brigham and Women's Hospital
110.5K papers, 6.8M citations

97% related

Performance
Metrics
No. of papers from the Institution in previous years
YearPapers
2023114
2022407
20215,247
20204,674
20194,094
20183,400