scispace - formally typeset
Search or ask a question
Institution

University of the Aegean

EducationMytilene, Greece
About: University of the Aegean is a education organization based out in Mytilene, Greece. It is known for research contribution in the topics: Population & Tourism. The organization has 2818 authors who have published 8100 publications receiving 179275 citations. The organization is also known as: UAEG.


Papers
More filters
Journal ArticleDOI
Georges Aad1, T. Abajyan2, Brad Abbott3, Jalal Abdallah4  +2942 moreInstitutions (200)
TL;DR: In this article, the production properties and couplings of the recently discovered Higgs boson using the decays into boson pairs were measured using the complete pp collision data sample recorded by the ATLAS experiment at the CERN Large Hadron Collider at centre-of-mass energies of 7 TeV and 8 TeV, corresponding to an integrated luminosity of about 25/fb.

513 citations

Journal ArticleDOI
TL;DR: In this article, a three-dimensional finite element (FE) model for armchair, zigzag and chiral single-walled carbon nanotubes (SWCNTs) is proposed.
Abstract: A three-dimensional finite element (FE) model for armchair, zigzag and chiral single-walled carbon nanotubes (SWCNTs) is proposed. The model development is based on the assumption that carbon nanotubes, when subjected to loading, behave like space-frame structures. The bonds between carbon atoms are considered as connecting load-carrying members, while the carbon atoms as joints of the members. To create the FE models, nodes are placed at the locations of carbon atoms and the bonds between them are modeled using three-dimensional elastic beam elements. The elastic moduli of beam elements are determined by using a linkage between molecular and continuum mechanics. In order to evaluate the FE model and demonstrate its performance, the influence of tube wall thickness, diameter and chirality on the elastic moduli (Young's modulus and shear modulus) of SWCNTs is investigated. The investigation includes armchair, zigzag and chiral SWCNTs. It is found that the choice of wall thickness significantly affects the calculation of Young's modulus. For the values of wall thickness used in the literature, the obtained values of Young's modulus agree very well with the corresponding theoretical results and many experimental measurements. Dependence of elastic moduli to diameter and chirality of the nanotubes is also obtained. With increased tube diameter, the elastic moduli of the SWCNTs increase. The Young's modulus of chiral SWCNTs is found to be larger than that of armchair and zigzag SWCNTs. The presented results demonstrate that the proposed FE model may provide a valuable tool for studying the mechanical behavior of carbon nanotubes and their integration in nano-composites.

502 citations

Journal ArticleDOI
TL;DR: In this paper, the authors present a multisite analysis of the relationship between plant diversity and ecosystem functioning within the European BIODEPTH network of plant-diversity manipulation experiments, showing that communities with a higher diversity of species and functional groups were more productive and utilized resources more completely by intercepting more light, taking up more nitrogen, and occupying more of the available space.
Abstract: We present a multisite analysis of the relationship between plant diversity and ecosystem functioning within the European BIODEPTH network of plant-diversity manipulation experiments. We report results of the analysis of 11 variables addressing several aspects of key ecosystem processes like biomass production, resource use (space, light, and nitrogen), and decomposition, measured across three years in plots of varying plant species richness at eight different European grassland field sites. Differences among sites explained substantial and significant amounts of the variation of most of the ecosystem processes examined. However, against this background of geographic variation, all the aspects of plant diversity and composition we examined (i.e., both numbers and types of species and functional groups) produced significant, mostly positive impacts on ecosystem processes. Analyses using the additive partitioning method revealed that complementarity effects (greater net yields than predicted from monocultures due to resource partitioning, positive interactions, etc.) were stronger and more consistent than selection effects (the covariance between monoculture yield and change in yield in mixtures) caused by dominance of species with particular traits. In general, communities with a higher diversity of species and functional groups were more productive and utilized resources more completely by intercepting more light, taking up more nitrogen, and occupying more of the available space. Diversity had significant effects through both increased vegetation cover and greater nitrogen retention by plants when this resource was more abundant through N2 fixation by legumes. However, additional positive diversity effects remained even after controlling for differences in vegetation cover and for the presence of legumes in communities. Diversity effects were stronger on above- than belowground processes. In particular, clear diversity effects on decomposition were only observed at one of the eight sites. The ecosystem effects of plant diversity also varied between sites and years. In general, diversity effects were lowest in the first year and stronger later in the experiment, indicating that they were not transitional due to community establishment. These analyses of our complete ecosystem process data set largely reinforce our previous results, and those from comparable biodiversity experiments, and extend the generality of diversity–ecosystem functioning relationships to multiple sites, years, and processes.

487 citations

Journal ArticleDOI
TL;DR: The high temporal plasticity in species composition and interaction identity coupled with the low variation in network structure properties imply that tight and specialized coevolution might not be as important as previously suggested and that plant-pollinator interaction networks might be less prone to detrimental effects of disturbance than previously thought.
Abstract: We analysed the dynamics of a plant-pollinator interaction network of a scrub community surveyed over four consecutive years. Species composition within the annual networks showed high temporal variation. Temporal dynamics were also evident in the topology of the network, as interactions among plants and pollinators did not remain constant through time. This change involved both the number and the identity of interacting partners. Strikingly, few species and interactions were consistently present in all four annual plant-pollinator networks (53% of the plant species, 21% of the pollinator species and 4.9% of the interactions). The high turnover in species-to-species interactions was mainly the effect of species turnover (c. 70% in pairwise comparisons among years), and less the effect of species flexibility to interact with new partners (c. 30%). We conclude that specialization in plant-pollinator interactions might be highly overestimated when measured over short periods of time. This is because many plant or pollinator species appear as specialists in 1 year, but tend to be generalists or to interact with different partner species when observed in other years. The high temporal plasticity in species composition and interaction identity coupled with the low variation in network structure properties (e.g. degree centralization, connectance, nestedness, average distance and network diameter) imply (i) that tight and specialized coevolution might not be as important as previously suggested and (ii) that plant-pollinator interaction networks might be less prone to detrimental effects of disturbance than previously thought. We suggest that this may be due to the opportunistic nature of plant and animal species regarding the available partner resources they depend upon at any particular time.

483 citations

Journal ArticleDOI
TL;DR: The objective of this article is to provide a general overview of the critical issue of jamming in WSNs and cover all the relevant work, providing the interested researcher pointers for open research issues in this field.
Abstract: Jamming represents the most serious security threat in the field of wireless sensor networks (WSNs), as it can easily put out of order even WSNs that utilize strong highlayer security mechanisms, simply because it is often ignored in the initial WSN design. The objective of this article is to provide a general overview of the critical issue of jamming in WSNs and cover all the relevant work, providing the interested researcher pointers for open research issues in this field. We provide a brief overview of the communication protocols typically used in WSN deployments and highlight the characteristics of contemporary WSNs, that make them susceptible to jamming attacks, along with the various types of jamming which can be exercised against WSNs. Common jamming techniques and an overview of various types of jammers are reviewed and typical countermeasures against jamming are also analyzed. The key ideas of existing security mechanisms against jamming attacks in WSNs are presented and open research issues, with respect to the defense against jamming attacks are highlighted.

481 citations


Authors

Showing all 2889 results

Network Information
Related Institutions (5)
Polytechnic University of Catalonia
45.3K papers, 949.3K citations

89% related

Aristotle University of Thessaloniki
58.2K papers, 1.4M citations

88% related

Lancaster University
44.5K papers, 1.6M citations

88% related

City University of Hong Kong
60.1K papers, 1.7M citations

87% related

Aalto University
32.6K papers, 829.6K citations

87% related

Performance
Metrics
No. of papers from the Institution in previous years
YearPapers
202345
202292
2021479
2020493
2019543
2018447