scispace - formally typeset
Search or ask a question
Institution

University of Tokyo

EducationTokyo, Japan
About: University of Tokyo is a education organization based out in Tokyo, Japan. It is known for research contribution in the topics: Population & Gene. The organization has 134564 authors who have published 337567 publications receiving 10178620 citations. The organization is also known as: Todai & Universitas Tociensis.
Topics: Population, Gene, Catalysis, Magnetic field, Galaxy


Papers
More filters
Journal ArticleDOI
TL;DR: The present work demonstrates that the pseudocapacitance of the nanosheet compound MXene Ti2C achieves a higher specific capacity relative to double-layer capacitor electrodes and a higher rate capability relative to ion intercalation electrodes.
Abstract: High-power Na-ion batteries have tremendous potential in various large-scale applications. However, conventional charge storage through ion intercalation or double-layer formation cannot satisfy the requirements of such applications owing to the slow kinetics of ion intercalation and the small capacitance of the double layer. The present work demonstrates that the pseudocapacitance of the nanosheet compound MXene Ti2C achieves a higher specific capacity relative to double-layer capacitor electrodes and a higher rate capability relative to ion intercalation electrodes. By utilizing the pseudocapacitance as a negative electrode, the prototype Na-ion full cell consisting of an alluaudite Na2Fe2(SO4)3 positive electrode and an MXene Ti2C negative electrode operates at a relatively high voltage of 2.4 V and delivers 90 and 40 mAh g(-1) at 1.0 and 5.0 A g(-1) (based on the weight of the negative electrode), respectively, which are not attainable by conventional electrochemical energy storage systems.

882 citations

Journal ArticleDOI
TL;DR: It is proposed that active Tead4 promotes TE development in outside cells, whereas Tead 4 activity is suppressed in inside cells by cell contact- and Lats-mediated inhibition of nuclear Yap localization, and differential signaling between inside and outside cell populations leads to changes in cell fate specification during TE formation.

882 citations

Journal ArticleDOI
TL;DR: In this article, the compositions of melts formed by partial melting of two relatively fertile spinel lherzolites were determined at pressures between 10 and 30 kbar under dry conditions using a layer of diamond aggregates sandwiched between peridotite layers.

880 citations

Journal ArticleDOI
TL;DR: It is shown that TH17 cells originating from Foxp3+ T cells have a key role in the pathogenesis of autoimmune arthritis.
Abstract: Autoimmune diseases often result from an imbalance between regulatory T (Treg) cells and interleukin-17 (IL-17)-producing T helper (TH17) cells; the origin of the latter cells remains largely unknown. Foxp3 is indispensable for the suppressive function of Treg cells, but the stability of Foxp3 has been under debate. Here we show that TH17 cells originating from Foxp3(+) T cells have a key role in the pathogenesis of autoimmune arthritis. Under arthritic conditions, CD25(lo)Foxp3(+)CD4(+) T cells lose Foxp3 expression (herein called exFoxp3 cells) and undergo transdifferentiation into TH17 cells. Fate mapping analysis showed that IL-17-expressing exFoxp3 T (exFoxp3 TH17) cells accumulated in inflamed joints. The conversion of Foxp3(+)CD4(+) T cells to TH17 cells was mediated by synovial fibroblast-derived IL-6. These exFoxp3 TH17 cells were more potent osteoclastogenic T cells than were naive CD4(+) T cell-derived TH17 cells. Notably, exFoxp3 TH17 cells were characterized by the expression of Sox4, chemokine (C-C motif) receptor 6 (CCR6), chemokine (C-C motif) ligand 20 (CCL20), IL-23 receptor (IL-23R) and receptor activator of NF-κB ligand (RANKL, also called TNFSF11). Adoptive transfer of autoreactive, antigen-experienced CD25(lo)Foxp3(+)CD4(+) T cells into mice followed by secondary immunization with collagen accelerated the onset and increased the severity of arthritis and was associated with the loss of Foxp3 expression in the majority of transferred T cells. We observed IL-17(+)Foxp3(+) T cells in the synovium of subjects with active rheumatoid arthritis (RA), which suggests that plastic Foxp3(+) T cells contribute to the pathogenesis of RA. These findings establish the pathological importance of Foxp3 instability in the generation of pathogenic TH17 cells in autoimmunity.

880 citations

Journal ArticleDOI
01 May 1995-Neuron
TL;DR: Findings revealed that the selective expression of a distinct molecule on Cajal-Retzius neurons is critical for the normal lamination of cortical neurons in the mammalian neocortex.

879 citations


Authors

Showing all 135252 results

NameH-indexPapersCitations
Ronald C. Kessler2741332328983
Donald P. Schneider2421622263641
George M. Whitesides2401739269833
Jing Wang1844046202769
Tadamitsu Kishimoto1811067130860
Yusuke Nakamura1792076160313
Dennis J. Selkoe177607145825
David L. Kaplan1771944146082
D. M. Strom1763167194314
Masayuki Yamamoto1711576123028
Krzysztof Matyjaszewski1691431128585
Yang Yang1642704144071
Qiang Zhang1611137100950
Kenji Kangawa1531117110059
Takashi Taniguchi1522141110658
Network Information
Related Institutions (5)
Kyoto University
217.2K papers, 6.5M citations

99% related

Nagoya University
128.2K papers, 3.2M citations

98% related

University of Tsukuba
79.4K papers, 1.9M citations

98% related

Hokkaido University
115.4K papers, 2.6M citations

97% related

Osaka University
185.6K papers, 5.1M citations

97% related

Performance
Metrics
No. of papers from the Institution in previous years
YearPapers
20241
2023354
20221,250
202112,943
202013,512
201912,656