scispace - formally typeset
Search or ask a question
Institution

University of Tokyo

EducationTokyo, Japan
About: University of Tokyo is a education organization based out in Tokyo, Japan. It is known for research contribution in the topics: Population & Gene. The organization has 134564 authors who have published 337567 publications receiving 10178620 citations. The organization is also known as: Todai & Universitas Tociensis.
Topics: Population, Gene, Catalysis, Magnetic field, Galaxy


Papers
More filters
Journal ArticleDOI
TL;DR: Experimental genetic evidence is presented that activation of the Wnt signaling pathway can cause intestinal and colonic tumors.
Abstract: Ectopic expression of certain Wnt genes in mouse mammary tissue is tumorigenic, and mutations that stabilize beta-catenin are found in various human cancers including colorectal cancer. To determine the role of stabilized beta-catenin in intestinal tumorigenesis in mice, we constructed by embryonic stem (ES) cell-mediated homologous recombination, a mutant beta-catenin allele whose exon 3 was sandwiched by loxP sequences. When the germline heterozygotes were crossed with mice expressing Cre recombinase in the intestines, the serines and threonine encoded by exon 3 and to be phosphorylated by glycogen synthase kinase 3beta (GSK3beta) were deleted in the offspring intestines, which caused adenomatous intestinal polyps resembling those in Apc(Delta716) knockout mice. Some nascent microadenomas were also found in the colon. These results present experimental genetic evidence that activation of the Wnt signaling pathway can cause intestinal and colonic tumors.

1,190 citations

Journal ArticleDOI
TL;DR: In this paper, the photocatalyst sheet design enables efficient and scalable water splitting using particulate semiconductors, which is a potentially scalable and economically feasible technology for converting solar energy into hydrogen.
Abstract: Photocatalytic water splitting using semiconductors is attractive for converting solar energy into hydrogen. An efficient and scalable system based on particulate photocatalyst sheets is now shown to exhibit energy conversion efficiency exceeding 1%. Photocatalytic water splitting using particulate semiconductors is a potentially scalable and economically feasible technology for converting solar energy into hydrogen1,2,3. Z-scheme systems based on two-step photoexcitation of a hydrogen evolution photocatalyst (HEP) and an oxygen evolution photocatalyst (OEP) are suited to harvesting of sunlight because semiconductors with either water reduction or oxidation activity can be applied to the water splitting reaction4,5. However, it is challenging to achieve efficient transfer of electrons between HEP and OEP particles6,7. Here, we present photocatalyst sheets based on La- and Rh-codoped SrTiO3 (SrTiO3:La, Rh; ref. 8) and Mo-doped BiVO4 (BiVO4:Mo) powders embedded into a gold (Au) layer. Enhancement of the electron relay by annealing and suppression of undesirable reactions through surface modification allow pure water (pH 6.8) splitting with a solar-to-hydrogen energy conversion efficiency of 1.1% and an apparent quantum yield of over 30% at 419 nm. The photocatalyst sheet design enables efficient and scalable water splitting using particulate semiconductors.

1,190 citations

Journal ArticleDOI
27 May 2000-Langmuir
TL;DR: In this paper, the relationship between sliding angles and contact angles on superhydrophobic surfaces with roughness was investigated and an equation was derived to describe the relationship of sliding angle and contact angle.
Abstract: Various superhydrophobic films having different surface roughnesses were prepared, and the relationships between the sliding angle, the contact angle, and the surface structure were investigated. In the highly hydrophobic region, the sliding angles of water droplets decreased with increasing contact angles. Microstructural observation revealed that surface structures that can trap air are important for the preparation of low-sliding-angle surfaces. We have also derived an equation that describes the relationship between sliding angles and contact angles on superhydrophobic surfaces with roughness. The results calculated on the basis of this equation agreed well with the experimental ones. Moreover, we have successfully prepared a transparent superhydrophobic film whose sliding angle is ∼1° for a 7 mg water droplet. On this film, there was almost no resistance to the sliding of water droplets. The film obtained satisfies the requirements of superhydrophobicity, transparency, and a low water sliding angle.

1,189 citations

Journal ArticleDOI
B. P. Abbott1, R. Abbott1, T. D. Abbott2, Sheelu Abraham3  +1271 moreInstitutions (145)
TL;DR: In 2019, the LIGO Livingston detector observed a compact binary coalescence with signal-to-noise ratio 12.9 and the Virgo detector was also taking data that did not contribute to detection due to a low SINR but were used for subsequent parameter estimation as discussed by the authors.
Abstract: On 2019 April 25, the LIGO Livingston detector observed a compact binary coalescence with signal-to-noise ratio 12.9. The Virgo detector was also taking data that did not contribute to detection due to a low signal-to-noise ratio, but were used for subsequent parameter estimation. The 90% credible intervals for the component masses range from to if we restrict the dimensionless component spin magnitudes to be smaller than 0.05). These mass parameters are consistent with the individual binary components being neutron stars. However, both the source-frame chirp mass and the total mass of this system are significantly larger than those of any other known binary neutron star (BNS) system. The possibility that one or both binary components of the system are black holes cannot be ruled out from gravitational-wave data. We discuss possible origins of the system based on its inconsistency with the known Galactic BNS population. Under the assumption that the signal was produced by a BNS coalescence, the local rate of neutron star mergers is updated to 250-2810.

1,189 citations

Journal ArticleDOI
15 Sep 2000-Cell
TL;DR: The results suggest that p53AIP1 is likely to play an important role in mediating p53-dependent apoptosis, and phosphorylation of Ser-46 regulates the transcriptional activation of this apoptosis-inducing gene.

1,187 citations


Authors

Showing all 135252 results

NameH-indexPapersCitations
Ronald C. Kessler2741332328983
Donald P. Schneider2421622263641
George M. Whitesides2401739269833
Jing Wang1844046202769
Tadamitsu Kishimoto1811067130860
Yusuke Nakamura1792076160313
Dennis J. Selkoe177607145825
David L. Kaplan1771944146082
D. M. Strom1763167194314
Masayuki Yamamoto1711576123028
Krzysztof Matyjaszewski1691431128585
Yang Yang1642704144071
Qiang Zhang1611137100950
Kenji Kangawa1531117110059
Takashi Taniguchi1522141110658
Network Information
Related Institutions (5)
Kyoto University
217.2K papers, 6.5M citations

99% related

Nagoya University
128.2K papers, 3.2M citations

98% related

University of Tsukuba
79.4K papers, 1.9M citations

98% related

Hokkaido University
115.4K papers, 2.6M citations

97% related

Osaka University
185.6K papers, 5.1M citations

97% related

Performance
Metrics
No. of papers from the Institution in previous years
YearPapers
20241
2023354
20221,250
202112,943
202013,512
201912,656