scispace - formally typeset
Search or ask a question
Institution

University of Tokyo

EducationTokyo, Japan
About: University of Tokyo is a education organization based out in Tokyo, Japan. It is known for research contribution in the topics: Population & Gene. The organization has 134564 authors who have published 337567 publications receiving 10178620 citations. The organization is also known as: Todai & Universitas Tociensis.
Topics: Population, Gene, Catalysis, Magnetic field, Galaxy


Papers
More filters
Journal ArticleDOI
24 Sep 1998-Nature
TL;DR: In this article, it was shown that the atmosphere of solid planets is capable of exerting dynamic pressure on their surfaces, thereby exciting free oscillations with amplitudes large enough to be detected by modern broad-band seismographs.
Abstract: Seismology provides a powerful tool for probing planetary interiors1,2, but it has been considered inapplicable to tectonically inactive planets where earthquakes are absent. Here, however, we show that the atmospheres of solid planets are capable of exerting dynamic pressure on their surfaces, thereby exciting free oscillations with amplitudes large enough to be detected by modern broad-band seismographs. Order-of-magnitude estimates of these forces give similar amplitudes of a few nanogals for the Earth, Venus and Mars despite widely varying atmospheric and ambient conditions. The amplitudes are also predicted to have a weak frequency dependence. Our analysis of seismograms, recorded continuously from 1992 to 1993 at 13 globally distributed stations, shows strong evidence for continuously excited fundamental-mode free oscillations on the Earth. This result, together with other recent studies3,4,5, is consistent with our estimate of atmospheric forcing and we therefore propose that it may be possible to detect atmospheric excitation of free oscillations on Venus and Mars as well.

1,048 citations

Proceedings ArticleDOI
06 Jul 2014
TL;DR: L-SHADE is proposed, which further extends SHADE with Linear Population Size Reduction (LPSR), which continually decreases the population size according to a linear function and is quite competitive with state-of-the-art evolutionary algorithms.
Abstract: SHADE is an adaptive DE which incorporates success-history based parameter adaptation and one of the state-of-the-art DE algorithms. This paper proposes L-SHADE, which further extends SHADE with Linear Population Size Reduction (LPSR), which continually decreases the population size according to a linear function. We evaluated the performance of L-SHADE on CEC2014 benchmarks and compared its search performance with state-of-the-art DE algorithms, as well as the state-of-the-art restart CMA-ES variants. The experimental results show that L-SHADE is quite competitive with state-of-the-art evolutionary algorithms.

1,048 citations

Book ChapterDOI
TL;DR: The catalytic properties of heteropoly compounds have drawn wide attention, owing to the versatility of these compounds as catalysts, which has been demonstrated both by success in large-scale applications and by promising laboratory results as mentioned in this paper.
Abstract: Publisher Summary This chapter describes the essence of the catalytic chemistry of heteropoly compounds in solution and in the solid state. The catalytic properties of heteropoly compounds have drawn wide attention, owing to the versatility of these compounds as catalysts, which has been demonstrated both by successhl large-scale applications and by promising laboratory results. Heteropolyanions are polymeric oxoanions formed by condensation of more than two different mononuclear oxoanions. Heteropolyanions formed from one kind of polyanion are called isopolyanions. Acidic elements such as Mo, W, V, Nb and Ta, which are present as oxoanions in aqueous solution, tend to polymerize by dehydration at low pH, forming polyanions and water.Heteropoly catalysts can be applied in various ways. They are used as acid as well as oxidation catalysts. They are used in various phases, as homogeneous liquids, in two-phase liquids (in phase-transfer catalysis), and in liquid-solid and in gas-solid combinations, etc.

1,047 citations

Journal ArticleDOI
TL;DR: This work proposes an aggregator that makes efficient use of the distributed power of electric vehicles to produce the desired grid-scale power and applies the dynamic programming algorithm to compute the optimal charging control for each vehicle.
Abstract: For vehicle-to-grid (V2G) frequency regulation services, we propose an aggregator that makes efficient use of the distributed power of electric vehicles to produce the desired grid-scale power. The cost arising from the battery charging and the revenue obtained by providing the regulation are investigated and represented mathematically. Some design considerations of the aggregator are also discussed together with practical constraints such as the energy restriction of the batteries. The cost function with constraints enables us to construct an optimization problem. Based on the developed optimization problem, we apply the dynamic programming algorithm to compute the optimal charging control for each vehicle. Finally, simulations are provided to illustrate the optimality of the proposed charging control strategy with variations of parameters.

1,045 citations

Journal ArticleDOI
TL;DR: A new principle of sensorimotor control of legged locomotion in an unpredictable environment is proposed on the basis of neurophysiological knowledge and a theory of nonlinear dynamics by investigating the performance of a bipedal model investigated by computer simulation.
Abstract: A new principle of sensorimotor control of legged locomotion in an unpredictable environment is proposed on the basis of neurophysiological knowledge and a theory of nonlinear dynamics. Stable and flexible locomotion is realized as a global limit cycle generated by a global entrainment between the rhythmic activities of a nervous system composed of coupled neural oscillators and the rhythmic movements of a musculo-skeletal system including interaction with its environment. Coordinated movements are generated not by slaving to an explicit representation of the precise trajectories of the movement of each part but by dynamic interactions among the nervous system, the musculo-skeletal system and the environment. The performance of a bipedal model based on the above principle was investigated by computer simulation. Walking movements stable to mechanical perturbations and to environmental changes were obtained. Moreover, the model generated not only the walking movement but also the running movement by changing a single parameter nonspecific to the movement. The transitions between the gait patterns occurred with hysteresis.

1,042 citations


Authors

Showing all 135252 results

NameH-indexPapersCitations
Ronald C. Kessler2741332328983
Donald P. Schneider2421622263641
George M. Whitesides2401739269833
Jing Wang1844046202769
Tadamitsu Kishimoto1811067130860
Yusuke Nakamura1792076160313
Dennis J. Selkoe177607145825
David L. Kaplan1771944146082
D. M. Strom1763167194314
Masayuki Yamamoto1711576123028
Krzysztof Matyjaszewski1691431128585
Yang Yang1642704144071
Qiang Zhang1611137100950
Kenji Kangawa1531117110059
Takashi Taniguchi1522141110658
Network Information
Related Institutions (5)
Kyoto University
217.2K papers, 6.5M citations

99% related

Nagoya University
128.2K papers, 3.2M citations

98% related

University of Tsukuba
79.4K papers, 1.9M citations

98% related

Hokkaido University
115.4K papers, 2.6M citations

97% related

Osaka University
185.6K papers, 5.1M citations

97% related

Performance
Metrics
No. of papers from the Institution in previous years
YearPapers
20241
2023354
20221,250
202112,943
202013,512
201912,656