scispace - formally typeset
Search or ask a question
Institution

University of Trento

EducationTrento, Italy
About: University of Trento is a education organization based out in Trento, Italy. It is known for research contribution in the topics: Population & Large Hadron Collider. The organization has 10527 authors who have published 30978 publications receiving 896614 citations. The organization is also known as: Universitá degli Studi di Trento & Universita degli Studi di Trento.


Papers
More filters
Journal ArticleDOI
TL;DR: In this article, the authors investigate the insolation of the cometary surface in order to predict the sublimation of water ice, and they use a two-layer model of a thin porous dust cover above an icy surface.
Abstract: The complex shape of comet 67P and its oblique rotation axis cause pronounced seasonal effects. Irradiation and hence activity vary strongly. Aims. We investigate the insolation of the cometary surface in order to predict the sublimation of water ice. The strongly varying erosion levels are correlated with the topography and morphology of the present cometary surface and its evolution. Methods. The insolation as a function of heliocentric distance and diurnal (spin dependent) variation is calculated using >105 facets of a detailed digital terrain model. Shading, but also illumination and thermal radiation by facets in the field of view of a specific facet are iteratively taken into account. We use a two-layer model of a thin porous dust cover above an icy surface to calculate the water sublimation, presuming steady state and a uniform surface. Our second model, which includes the history of warming and cooling due to thermal inertia, is restricted to a much simpler shape model but allows us to test various distributions of active areas. Results. Sublimation from a dirty ice surface yields maximum erosion. A thin dust cover of 50 μm yields similar rates at perihelion. Only about 6% of the surface needs to be active to match the observed water production rates at perihelion. A dust layer of 1 mm thickness suppresses the activity by a factor of 4 to 5. Erosion on the south side can reach more than 10 m per orbit at active spots. The energy input to the concave neck area (Hapi) during northern summer is enhanced by about 50% owing to self-illumination. Here surface temperatures reach maximum values along the foot of the Hathor wall. Integrated over the whole orbit this area receives the least energy input. Based on the detailed shape model, the simulations identify “hot spots” in depressions and larger pits in good correlation with observed dust activity. Three-quarters of the total sublimation is produced while the sub-solar latitude is south, resulting in a distinct dichotomy in activity and morphology. Conclusions. The northern areas display a much rougher morphology than what is seen on Imhotep, an area at the equator that will be fully illuminated when 67P is closer to the Sun. Self-illumination in concave regions enhance the energy input and hence erosion. This explains the early activity observed at Hapi. Cliffs are more prone to erosion than horizontal, often dust covered, areas, which leads to surface planation. Local activity can only persist if the forming cliff walls are eroding. Comet 67P has two lobes and also two distinct sides. Transport of material from the south to the north is probable. The morphology of the Imhotep plain should be typical for the terrains of the yet unseen southern hemisphere.

193 citations

Journal ArticleDOI
TL;DR: The development of the highly accurate ADER–DG approach for tetrahedral meshes including viscoelastic material provides a novel, flexible and efficient numerical technique to approach 3-D wave propagation problems including realistic attenuation and complex geometry.
Abstract: SUMMARY We present a new numerical method to solve the heterogeneous anelastic, seismic wave equations with arbitrary high order accuracy in space and time on 3-D unstructured tetrahedral meshes. Using the velocity–stress formulation provides a linear hyperbolic system of equations with source terms that is completed by additional equations for the anelastic functions including the strain history of the material. These additional equations result from the rheological model of the generalized Maxwell body and permit the incorporation of realistic attenuation properties of viscoelastic material accounting for the behaviour of elastic solids and viscous fluids. The proposed method combines the Discontinuous Galerkin (DG) finite element (FE) method with the ADER approach using Arbitrary high order DERivatives for flux calculations. The DG approach, in contrast to classical FE methods, uses a piecewise polynomial approximation of the numerical solution which allows for discontinuities at element interfaces. Therefore, the well-established theory of numerical fluxes across element interfaces obtained by the solution of Riemann problems can be applied as in the finite volume framework. The main idea of the ADER time integration approach is a Taylor expansion in time in which all time derivatives are replaced by space derivatives using the so-called Cauchy–Kovalewski procedure which makes extensive use of the governing PDE. Due to the ADER time integration technique the same approximation order in space and time is achieved automatically and the method is a one-step scheme advancing the solution for one time step without intermediate stages. To this end, we introduce a new unrolled recursive algorithm for efficiently computing the Cauchy–Kovalewski procedure by making use of the sparsity of the system matrices. The numerical convergence analysis demonstrates that the new schemes provide very high order accuracy even on unstructured tetrahedral meshes while computational cost and storage space for a desired accuracy can be reduced when applying higher degree approximation polynomials. In addition, we investigate the increase in computing time, when the number of relaxation mechanisms due to the generalized Maxwell body are increased. An application to a well-acknowledged test case and comparisons with analytic and reference solutions, obtained by different well-established numerical methods, confirm the performance of the proposed method. Therefore, the development of the highly accurate ADER–DG approach for tetrahedral meshes including viscoelastic material provides a novel, flexible and efficient numerical technique to approach 3-D wave propagation problems including realistic attenuation and complex geometry.

192 citations

Journal ArticleDOI
TL;DR: In this paper, the special issue editors explore some of the current debates on stories and organizational change, introduce the articles that are included in the issue, identify some prominent themes (power, identity construction and defence, plurivocality, knowledge transfer, boundary unfreezing, sense-making and sense-destroying) and some possible blind spots (authenticity, narrative structure).
Abstract: Change spawns stories and stories can trigger change. Stories can also block change and can define what constitutes change. In this Introduction to the special issue, the special issue editors explore some of the current debates on stories and organizational change, introduce the articles that are included in the issue, identify some prominent themes (power, identity construction and defence, plurivocality, knowledge transfer, boundary unfreezing, sense-making and sense-destroying) and some possible blind spots (authenticity, narrative structure). In this way, they offer a conspectus on the current state of play in this field, signalling some challenges and directions for the future.

191 citations

Journal ArticleDOI
21 Jun 2012
TL;DR: In this paper, a search for neutral Higgs bosons decaying to tau pairs at a center-of-mass energy of 7 TeV is performed using a dataset corresponding to an integrated luminosity of 4.6 fb^(−1) recorded by the CMS experiment at the LHC.
Abstract: A search for neutral Higgs bosons decaying to tau pairs at a center-of-mass energy of 7 TeV is performed using a dataset corresponding to an integrated luminosity of 4.6 fb^(−1) recorded by the CMS experiment at the LHC. The search is sensitive to both the standard model Higgs boson and to the neutral Higgs bosons predicted by the minimal supersymmetric extension of the standard model (MSSM). No excess of events is observed in the tau-pair invariant-mass spectrum. For a standard model Higgs boson in the mass range of 110–145 GeV upper limits at 95% confidence level (CL) on the production cross section are determined. We exclude a Higgs boson with m_H=115 GeV with a production cross section 3.2 times of that predicted by the standard model. In the MSSM, upper limits on the neutral Higgs boson production cross section times branching fraction to tau pairs, as a function of the pseudoscalar Higgs boson mass, m_A, sets stringent new bounds in the parameter space, excluding at 95% CL values of tan β as low as 7.1 at m_A=160 GeV in the m^(max)_h benchmark scenario.

191 citations

Proceedings ArticleDOI
05 Sep 2012
TL;DR: This work assesses the performances of different subsets of structural network features, and in particular those concerned with ego-networks, in predicting the Big-5 personality traits, and focuses on social networks derived from real-life data gathered through smartphones.
Abstract: In this work, we investigate the relationships between social network structure and personality; we assess the performances of different subsets of structural network features, and in particular those concerned with ego-networks, in predicting the Big-5 personality traits. In addition to traditional survey-based data, this work focuses on social networks derived from real-life data gathered through smartphones. Besides showing that the latter are superior to the former for the task at hand, our results provide a fine-grained analysis of the contribution the various feature sets are able to provide to personality classification, along with an assessment of the relative merits of the various networks exploited.

191 citations


Authors

Showing all 10758 results

NameH-indexPapersCitations
Yi Chen2174342293080
Jie Zhang1784857221720
Richard B. Lipton1762110140776
Jasvinder A. Singh1762382223370
J. N. Butler1722525175561
Andrea Bocci1722402176461
P. Chang1702154151783
Bradley Cox1692150156200
Marc Weber1672716153502
Guenakh Mitselmakher1651951164435
Brian L Winer1621832128850
J. S. Lange1602083145919
Ralph A. DeFronzo160759132993
Darien Wood1602174136596
Robert Stone1601756167901
Network Information
Related Institutions (5)
ETH Zurich
122.4K papers, 5.1M citations

94% related

University of Maryland, College Park
155.9K papers, 7.2M citations

93% related

University of California, Santa Barbara
80.8K papers, 4.6M citations

93% related

Sapienza University of Rome
155.4K papers, 4.3M citations

92% related

Centre national de la recherche scientifique
382.4K papers, 13.6M citations

92% related

Performance
Metrics
No. of papers from the Institution in previous years
YearPapers
2023158
2022340
20212,399
20202,286
20192,129
20181,943