scispace - formally typeset
Search or ask a question
Institution

University of Trento

EducationTrento, Italy
About: University of Trento is a education organization based out in Trento, Italy. It is known for research contribution in the topics: Population & Large Hadron Collider. The organization has 10527 authors who have published 30978 publications receiving 896614 citations. The organization is also known as: Universitá degli Studi di Trento & Universita degli Studi di Trento.


Papers
More filters
Journal ArticleDOI
TL;DR: This paper shows that the mechanisms of contextual reasoning proposed in the literature can be classified into three general forms (called localized reasoning, push and pop, and shifting), and distill two general principles of a logic of contextual Reasoning that can be adequately formalized in the framework of MultiContext Systems.
Abstract: In this paper we provide a foundation of a theory of contextual reasoning from the perspective of a theory of knowledge representation. Starting from the so-called metaphor of the box, we firstly show that the mechanisms of contextual reasoning proposed in the literature can be classified into three general forms (called localized reasoning, push and pop, and shifting). Secondly, we provide a justification of this classification, by showing that each mechanism corresponds to operating on a fundamental dimension along which context dependent representations may vary (namely, partiality, approximation and perspective). From the previous analysis, we distill two general principles of a logic of contextual reasoning. Finally, we show that these two principles can be adequately formalized in the framework of MultiContext Systems. In the last part of the paper, we provide a practical illustration of the ideas discussed in the paper by formalising a simple scenario, called the Magic Box problem.

172 citations

Journal ArticleDOI
TL;DR: The results indicate the predominance of CD4+ T cells producing both the pro inflammatory cytokine IFN-γ and the anti-inflammatory cytokine IL-10 in BAL of patients with active TB.

172 citations

Journal ArticleDOI
TL;DR: A new family of well-balanced path-conservative quadrature-free one-step ADER finite volume and discontinuous Galerkin finite element schemes on unstructured meshes for the solution of hyperbolic partial differential equations with non-conservative products and stiff source terms is developed.

171 citations

Journal ArticleDOI
B. P. Abbott1, Richard J. Abbott1, T. D. Abbott2, Sheelu Abraham3  +1273 moreInstitutions (140)
TL;DR: In this article, the first and second observing runs of the Advanced LIGO and Virgo detector network were used to obtain the first standard-siren measurement of the Hubble constant (H 0).
Abstract: This paper presents the gravitational-wave measurement of the Hubble constant (H 0) using the detections from the first and second observing runs of the Advanced LIGO and Virgo detector network. The presence of the transient electromagnetic counterpart of the binary neutron star GW170817 led to the first standard-siren measurement of H 0. Here we additionally use binary black hole detections in conjunction with galaxy catalogs and report a joint measurement. Our updated measurement is H 0 = km s−1 Mpc−1 (68.3% of the highest density posterior interval with a flat-in-log prior) which is an improvement by a factor of 1.04 (about 4%) over the GW170817-only value of km s−1 Mpc−1. A significant additional contribution currently comes from GW170814, a loud and well-localized detection from a part of the sky thoroughly covered by the Dark Energy Survey. With numerous detections anticipated over the upcoming years, an exhaustive understanding of other systematic effects are also going to become increasingly important. These results establish the path to cosmology using gravitational-wave observations with and without transient electromagnetic counterparts.

171 citations

Journal ArticleDOI
TL;DR: A numerical convergence study confirms that the new scheme achieves the desired arbitrary high-order accuracy even for anisotropic material on unstructured tetrahedral meshes, and shows that higher accuracy can be reached with higher-order schemes while reducing computational cost and storage space.
Abstract: SUMMARY We present a new numerical method to solve the heterogeneous elastic anisotropic wave equation with arbitrary high-order accuracy in space and time on unstructured tetrahedral meshes. Using the most general Hooke's tensor we derive the velocity-stress formulation leading to a linear hyperbolic system which accounts for the variation of the material properties depending on direction. This approach allows for the accurate modelling even of the most general crystalline symmetry class, the triclinic anisotropy, as no interpolation of material properties to particular mesh vertices is necessary. The proposed method combines the Discontinuous Galerkin method with the arbitrary high-order derivatives (ADER) time integration approach using arbitrary high-order derivatives of the piecewise polynomial representation of the unknown solution. The discontinuities of this piecewise polynomial approximation at element interfaces permit the application of the well-established theory of finite volumes and numerical fluxes across element interfaces obtained by the solution of derivative Riemann problems. Due to the novel ADER time integration technique the scheme provides the same approximation order in space and time automatically. A numerical convergence study confirms that the new scheme achieves the desired arbitrary high-order accuracy even for anisotropic material on unstructured tetrahedral meshes. Furthermore, it shows that higher accuracy can be reached with higher-order schemes while reducing computational cost and storage space. To this end, we also present a new Godunov-type numerical flux for anisotropic material and compare its accuracy with a computationally simpler Rusanov flux. As a further extension, we include the coupling of anisotropy and viscoelastic attenuation based on the Generalized Maxwell Body rheology and the mean and deviatoric stress concepts. Finally, we validate the new scheme by comparing the results of our simulations to an analytic solution as well as to spectral element computations.

171 citations


Authors

Showing all 10758 results

NameH-indexPapersCitations
Yi Chen2174342293080
Jie Zhang1784857221720
Richard B. Lipton1762110140776
Jasvinder A. Singh1762382223370
J. N. Butler1722525175561
Andrea Bocci1722402176461
P. Chang1702154151783
Bradley Cox1692150156200
Marc Weber1672716153502
Guenakh Mitselmakher1651951164435
Brian L Winer1621832128850
J. S. Lange1602083145919
Ralph A. DeFronzo160759132993
Darien Wood1602174136596
Robert Stone1601756167901
Network Information
Related Institutions (5)
ETH Zurich
122.4K papers, 5.1M citations

94% related

University of Maryland, College Park
155.9K papers, 7.2M citations

93% related

University of California, Santa Barbara
80.8K papers, 4.6M citations

93% related

Sapienza University of Rome
155.4K papers, 4.3M citations

92% related

Centre national de la recherche scientifique
382.4K papers, 13.6M citations

92% related

Performance
Metrics
No. of papers from the Institution in previous years
YearPapers
2023158
2022340
20212,399
20202,286
20192,129
20181,943