scispace - formally typeset
Search or ask a question
Institution

University of Trento

EducationTrento, Italy
About: University of Trento is a education organization based out in Trento, Italy. It is known for research contribution in the topics: Population & Large Hadron Collider. The organization has 10527 authors who have published 30978 publications receiving 896614 citations. The organization is also known as: Universitá degli Studi di Trento & Universita degli Studi di Trento.


Papers
More filters
Journal ArticleDOI
TL;DR: A conservative least-squares polynomial reconstruction operator is applied to the discontinuous Galerkin method, which yields space–time polynomials for the vector of conserved variables and for the physical fluxes and source terms that can be used in a natural way to construct very efficient fully-discrete and quadrature-free one-step schemes.

555 citations

Journal ArticleDOI
TL;DR: The article explores the interconnections between the feminization of migration, on the one hand, and ongoing change in the Southern European care regimes, onthe other hand to identify issues of efficiency, equity and sustainability raised by this new ‘model’ of care.
Abstract: Concern over the need to provide long-term care for an ageing population has stimulated a search for new solutions able to ensure financial viability and a better balance between demand and supply of care. There is at present a great variety of care regimes across industrial countries, with Mediterranean countries forming a distinctive cluster where management of care is overwhelmingly entrusted to the family. In some of these countries elderly care has recently attracted large flows of care migrants, ushering in a new division of labour among family carers (mainly women), female immigrants, and skilled native workers. The article explores the interconnections between the feminization of migration, on the one hand, and ongoing change in the Southern European care regimes, on the other hand. Different strands of the literature are brought together and reviewed to illustrate ongoing developments. One main objective is to identify issues of efficiency, equity and sustainability raised by this new ‘model’ of ...

554 citations

Journal ArticleDOI
04 Jun 2020-Nature
TL;DR: The results obtained by seventy different teams analysing the same functional magnetic resonance imaging dataset show substantial variation, highlighting the influence of analytical choices and the importance of sharing workflows publicly and performing multiple analyses.
Abstract: Data analysis workflows in many scientific domains have become increasingly complex and flexible. Here we assess the effect of this flexibility on the results of functional magnetic resonance imaging by asking 70 independent teams to analyse the same dataset, testing the same 9 ex-ante hypotheses1. The flexibility of analytical approaches is exemplified by the fact that no two teams chose identical workflows to analyse the data. This flexibility resulted in sizeable variation in the results of hypothesis tests, even for teams whose statistical maps were highly correlated at intermediate stages of the analysis pipeline. Variation in reported results was related to several aspects of analysis methodology. Notably, a meta-analytical approach that aggregated information across teams yielded a significant consensus in activated regions. Furthermore, prediction markets of researchers in the field revealed an overestimation of the likelihood of significant findings, even by researchers with direct knowledge of the dataset2-5. Our findings show that analytical flexibility can have substantial effects on scientific conclusions, and identify factors that may be related to variability in the analysis of functional magnetic resonance imaging. The results emphasize the importance of validating and sharing complex analysis workflows, and demonstrate the need for performing and reporting multiple analyses of the same data. Potential approaches that could be used to mitigate issues related to analytical variability are discussed.

551 citations

Proceedings Article
09 Oct 2010
TL;DR: This work proposes an approach to adjective-noun composition (AN) for corpus-based distributional semantics that represents nouns as vectors and adjectives as data-induced (linear) functions over nominal vectors, and shows that the model significantly outperforms the rivals on the task of reconstructing AN vectors not seen in training.
Abstract: We propose an approach to adjective-noun composition (AN) for corpus-based distributional semantics that, building on insights from theoretical linguistics, represents nouns as vectors and adjectives as data-induced (linear) functions (encoded as matrices) over nominal vectors. Our model significantly outperforms the rivals on the task of reconstructing AN vectors not seen in training. A small post-hoc analysis further suggests that, when the model-generated AN vector is not similar to the corpus-observed AN vector, this is due to anomalies in the latter. We show moreover that our approach provides two novel ways to represent adjective meanings, alternative to its representation via corpus-based co-occurrence vectors, both outperforming the latter in an adjective clustering task.

549 citations

Journal ArticleDOI
TL;DR: In this paper, the spontaneous formation of pinned quantized vortices in the Bose-condensed phase of a polariton fluid was observed in a solid state system made of exciton polaritons.
Abstract: When a superfluid—such as liquid helium—is set in rotation, vortices appear in which circulation around a closed loop can take only discrete values. Such quantized vortices have now been observed in a solid-state system—a Bose–Einstein condensate made of exciton polaritons. One of the most striking quantum effects in an interacting Bose gas at low temperature is superfluidity. First observed in liquid 4He, this phenomenon has been intensively studied in a variety of systems for its remarkable features such as the persistence of superflows and the proliferation of quantized vortices1. The achievement of Bose–Einstein condensation in dilute atomic gases2 provided the opportunity to observe and study superfluidity in an extremely clean and well-controlled environment. In the solid state, Bose–Einstein condensation of exciton polaritons has been reported recently3,4,5,6. Polaritons are strongly interacting light–matter quasiparticles that occur naturally in semiconductor microcavities in the strong-coupling regime and constitute an interesting example of composite bosons. Here, we report the observation of spontaneous formation of pinned quantized vortices in the Bose-condensed phase of a polariton fluid. Theoretical insight into the possible origin of such vortices is presented in terms of a generalized Gross–Pitaevskii equation. Whereas the observation of quantized vortices is, in itself, not sufficient for establishing the superfluid nature of the non-equilibrium polariton condensate, it suggests parallels between our system and conventional superfluids.

544 citations


Authors

Showing all 10758 results

NameH-indexPapersCitations
Yi Chen2174342293080
Jie Zhang1784857221720
Richard B. Lipton1762110140776
Jasvinder A. Singh1762382223370
J. N. Butler1722525175561
Andrea Bocci1722402176461
P. Chang1702154151783
Bradley Cox1692150156200
Marc Weber1672716153502
Guenakh Mitselmakher1651951164435
Brian L Winer1621832128850
J. S. Lange1602083145919
Ralph A. DeFronzo160759132993
Darien Wood1602174136596
Robert Stone1601756167901
Network Information
Related Institutions (5)
ETH Zurich
122.4K papers, 5.1M citations

94% related

University of Maryland, College Park
155.9K papers, 7.2M citations

93% related

University of California, Santa Barbara
80.8K papers, 4.6M citations

93% related

Sapienza University of Rome
155.4K papers, 4.3M citations

92% related

Centre national de la recherche scientifique
382.4K papers, 13.6M citations

92% related

Performance
Metrics
No. of papers from the Institution in previous years
YearPapers
2023158
2022340
20212,399
20202,286
20192,129
20181,943