scispace - formally typeset
Search or ask a question
Institution

University of Tsukuba

EducationTsukuba, Ibaraki, Japan
About: University of Tsukuba is a education organization based out in Tsukuba, Ibaraki, Japan. It is known for research contribution in the topics: Population & Gene. The organization has 36352 authors who have published 79483 publications receiving 1934752 citations. The organization is also known as: Tsukuba daigaku & Tsukuba University.


Papers
More filters
Journal ArticleDOI
24 Nov 1999-Cell
TL;DR: PI(4)P5Kalpha is a downstream effector of ARF 6 and when ARF6 is activated by agonist stimulation, it triggers recruitment of a diverse but interactive set of signaling molecules into sites of active cytoskeletal and membrane rearrangement.

803 citations

Journal ArticleDOI
K. Adcox1, S. S. Adler2, N. N. Ajitanand3, Y. Akiba  +319 moreInstitutions (36)
TL;DR: In this paper, the authors measured the transverse momentum spectra for charged hadrons and neutral pions in the range 1 Gev/c < P-T < 5 GeV/c.
Abstract: Transverse momentum spectra for charged hadrons and for neutral pions in the range 1 Gev/c < P-T < 5 GeV/c have been measured by the PHENIX experiment at RHIC in Au + Au collisions at rootS(NN) = 130 GeV. At high p(T) the spectra from peripheral nuclear collisions are consistent with scaling the spectra from p + p collisions by the average number of binary nucleon-nucleon collisions. The spectra from central collisions are significantly suppressed when compared to the binary-scaled p + p expectation, and also when compared to similarly binary-scaled peripheral collisions, indicating a novel nuclear-medium effect in central nuclear collisions at RHIC energies.

803 citations

Journal ArticleDOI
TL;DR: These experiments show that Keap1 acts upstream of Nrf2 in the cellular response to oxidative and xenobiotic stress, and breeding to NRF2-deficient mice reversed the phenotypic Keap 1 deficiencies.
Abstract: Transcription factor Nrf2 (encoded by Nfe2l2) regulates a battery of detoxifying and antioxidant genes, and Keap1 represses Nrf2 function. When we ablated Keap1, Keap1-deficient mice died postnatally, probably from malnutrition resulting from hyperkeratosis in the esophagus and forestomach. Nrf2 activity affects the expression levels of several squamous epithelial genes. Biochemical data show that, without Keap1, Nrf2 constitutively accumulates in the nucleus to stimulate transcription of cytoprotective genes. Breeding to Nrf2-deficient mice reversed the phenotypic Keap1 deficiencies. These experiments show that Keap1 acts upstream of Nrf2 in the cellular response to oxidative and xenobiotic stress.

802 citations

Journal ArticleDOI
TL;DR: A means of observing biological tissues in three dimensions using a novel X–ray computed tomography (CT) by modifying the phase–contrast technique, which was able to clearly differentiate the cancer lesion from the normal tissue.
Abstract: Biological soft tissues are almost transparent to hard X rays and therefore cannot be investigated without enhancement with a contrast medium, such as iodine. On the other hand, phase–contrast X–ray imaging is sensitive to light elements1–8. This is because the X–ray phase shift cross section is almost a thousand times larger than the X–ray absorption cross section for light elements such as hydrogen, carbon, nitrogen and oxygen4,5. Hence, phase–contrast X–ray imaging is a promising technique for observing the structure inside biological soft tissues without the need for staining and without serious radiation exposure. We have devised a means of observing biological tissues in three dimensions using a novel X–ray computed tomography (CT) by modifying the phase–contrast technique. To generate appropriate CT input data, we used phase–mapping images obtained using an X–ray interferometer6 and computer analysis of interference patterns9. Now, we present a three–dimensional observation result of a nonstained sample of a cancerous rabbit liver, using a synchrotron X–ray source. Phase–contrast X–ray CT was able to clearly differentiate the cancer lesion from the normal tissue. Moreover, fine structures corresponding to cancerous degeneration and fibrous tissues were clearly depicted.

791 citations

Journal ArticleDOI
TL;DR: The contention that Nrf2 protein synthesized de novo after exposure to stress accumulates in the nucleus by bypassing the Keap1 gate supports the contention that the sensory mechanism of oxidative and electrophilic stresses is closely linked to the degradation mechanism of NRF2.
Abstract: The Keap1-Nrf2 system is the major regulatory pathway of cytoprotective gene expression against oxidative and/or electrophilic stresses. Keap1 acts as a stress sensor protein in this system. While Keap1 constitutively suppresses Nrf2 activity under unstressed conditions, oxidants or electrophiles provoke the repression of Keap1 activity, inducing the Nrf2 activation. However, the precise molecular mechanisms behind the liberation of Nrf2 from Keap1 repression in the presence of stress remain to be elucidated. We hypothesized that oxidative and electrophilic stresses induce the nuclear accumulation of Nrf2 by affecting the Keap1-mediated rapid turnover of Nrf2, since such accumulation was diminished by the protein synthesis inhibitor cycloheximide. While both the Cys273 and Cys288 residues of Keap1 are required for suppressing Nrf2 nuclear accumulation, treatment of cells with electrophiles or mutation of these cysteine residues to alanine did not affect the association of Keap1 with Nrf2 either in vivo or in vitro. Rather, these treatments impaired the Keap1-mediated proteasomal degradation of Nrf2. These results support the contention that Nrf2 protein synthesized de novo after exposure to stress accumulates in the nucleus by bypassing the Keap1 gate and that the sensory mechanism of oxidative and electrophilic stresses is closely linked to the degradation mechanism of Nrf2.

789 citations


Authors

Showing all 36572 results

NameH-indexPapersCitations
Aaron R. Folsom1811118134044
Kazuo Shinozaki178668128279
Hyun-Chul Kim1764076183227
Masayuki Yamamoto1711576123028
Hua Zhang1631503116769
Lewis L. Lanier15955486677
David Cella1561258106402
Takashi Taniguchi1522141110658
Yoshio Bando147123480883
Kazuhiko Hara1411956107697
Janet Rossant13841671913
Christoph Paus1371585100801
Kohei Miyazono13551568706
Craig Blocker134137994195
Fumihiko Ukegawa133149294465
Network Information
Related Institutions (5)
University of Tokyo
337.5K papers, 10.1M citations

98% related

Nagoya University
128.2K papers, 3.2M citations

97% related

Kyoto University
217.2K papers, 6.5M citations

97% related

Osaka University
185.6K papers, 5.1M citations

97% related

Hokkaido University
115.4K papers, 2.6M citations

96% related

Performance
Metrics
No. of papers from the Institution in previous years
YearPapers
2023104
2022323
20214,079
20203,887
20193,515
20183,388