scispace - formally typeset
Search or ask a question

Showing papers by "University of Tübingen published in 2005"


Journal ArticleDOI
TL;DR: The addition of temozolomide to radiotherapy for newly diagnosed glioblastoma resulted in a clinically meaningful and statistically significant survival benefit with minimal additional toxicity.
Abstract: methods Patients with newly diagnosed, histologically confirmed glioblastoma were randomly assigned to receive radiotherapy alone (fractionated focal irradiation in daily fractions of 2 Gy given 5 days per week for 6 weeks, for a total of 60 Gy) or radiotherapy plus continuous daily temozolomide (75 mg per square meter of body-surface area per day, 7 days per week from the first to the last day of radiotherapy), followed by six cycles of adjuvant temozolomide (150 to 200 mg per square meter for 5 days during each 28-day cycle). The primary end point was overall survival. results A total of 573 patients from 85 centers underwent randomization. The median age was 56 years, and 84 percent of patients had undergone debulking surgery. At a median follow-up of 28 months, the median survival was 14.6 months with radiotherapy plus temozolomide and 12.1 months with radiotherapy alone. The unadjusted hazard ratio for death in the radiotherapy-plus-temozolomide group was 0.63 (95 percent confidence interval, 0.52 to 0.75; P<0.001 by the log-rank test). The two-year survival rate was 26.5 percent with radiotherapy plus temozolomide and 10.4 percent with radiotherapy alone. Concomitant treatment with radiotherapy plus temozolomide resulted in grade 3 or 4 hematologic toxic effects in 7 percent of patients.

16,653 citations


Journal ArticleDOI
TL;DR: Patients with glioblastoma containing a methylated MGMT promoter benefited from temozolomide, whereas those who did not have a methylation of theMGMT promoter did notHave such a benefit and were assigned to only radiotherapy.
Abstract: background Epigenetic silencing of the MGMT (O 6 -methylguanine–DNA methyltransferase) DNArepair gene by promoter methylation compromises DNA repair and has been associated with longer survival in patients with glioblastoma who receive alkylating agents. methods We tested the relationship between MGMT silencing in the tumor and the survival of patients who were enrolled in a randomized trial comparing radiotherapy alone with radiotherapy combined with concomitant and adjuvant treatment with temozolomide. The methylation status of the MGMT promoter was determined by methylation-specific polymerase-chain-reaction analysis. results The MGMT promoter was methylated in 45 percent of 206 assessable cases. Irrespective of treatment, MGMT promoter methylation was an independent favorable prognostic factor (P<0.001 by the log-rank test; hazard ratio, 0.45; 95 percent confidence interval, 0.32 to 0.61). Among patients whose tumor contained a methylated MGMT promoter, a survival benefit was observed in patients treated with temozolomide and radiotherapy; their median survival was 21.7 months (95 percent confidence interval, 17.4 to 30.4), as compared with 15.3 months (95 percent confidence interval, 13.0 to 20.9) among those who were assigned to only radiotherapy (P=0.007 by the log-rank test). In the absence of methylation of the MGMT promoter, there was a smaller and statistically insignificant difference in survival between the treatment groups. conclusions Patients with glioblastoma containing a methylated MGMT promoter benefited from temozolomide, whereas those who did not have a methylated MGMT promoter did not have such a benefit.

6,018 citations


Journal ArticleDOI
06 Jan 2005-Nature
TL;DR: This work shows that five PIN genes collectively control auxin distribution to regulate cell division and cell expansion in the primary root and reveals an interaction network of auxin transport facilitators and root fate determinants that control patterning and growth of the root primordium.
Abstract: Local accumulation of the plant growth regulator auxin mediates pattern formation in Arabidopsis roots and influences outgrowth and development of lateral root- and shoot-derived primordia. However, it has remained unclear how auxin can simultaneously regulate patterning and organ outgrowth and how its distribution is stabilized in a primordium-specific manner. Here we show that five PIN genes collectively control auxin distribution to regulate cell division and cell expansion in the primary root. Furthermore, the joint action of these genes has an important role in pattern formation by focusing the auxin maximum and restricting the expression domain of PLETHORA (PLT) genes, major determinants for root stem cell specification. In turn, PLT genes are required for PIN gene transcription to stabilize the auxin maximum at the distal root tip. Our data reveal an interaction network of auxin transport facilitators and root fate determinants that control patterning and growth of the root primordium.

1,794 citations


Journal ArticleDOI
TL;DR: In this paper, the authors present a comprehensive meta-analysis of the literature on organizational identification (OI) and show that OI is correlated with a wide range of work-related attitudes, behaviors, and context variables.

1,455 citations


Journal ArticleDOI
TL;DR: This Review highlights the molecular machinery and inflammatory pathways used by platelets to initiate and accelerate atherothrombosis.
Abstract: Platelets represent an important linkage between inflammation, thrombosis, and atherogenesis Inflammation is characterized by interactions among platelets, leukocytes, and ECs These interactions trigger autocrine and paracrine activation processes that lead to leukocyte recruitment into the vascular wall Platelet-induced chronic inflammatory processes at the vascular wall result in development of atherosclerotic lesions and atherothrombosis This Review highlights the molecular machinery and inflammatory pathways used by platelets to initiate and accelerate atherothrombosis

1,293 citations


Journal ArticleDOI
01 Mar 2005-Brain
TL;DR: Results document a beneficial effect of non-invasive cortical stimulation on a set of hand functions that mimic activities of daily living in the paretic hand of patients with chronic stroke, and suggest that this interventional strategy in combination with customary rehabilitative treatments may play an adjuvant role in neurorehabilitation.
Abstract: Stroke is a leading cause of adult motor disability. Despite recent progress, recovery of motor function after stroke is usually incomplete. This double blind, Sham-controlled, crossover study was designed to test the hypothesis that non-invasive stimulation of the motor cortex could improve motor function in the paretic hand of patients with chronic stroke. Hand function was measured using the Jebsen-Taylor Hand Function Test (JTT), a widely used, well validated test for functional motor assessment that reflects activities of daily living. JTT measured in the paretic hand improved significantly with non-invasive transcranial direct current stimulation (tDCS), but not with Sham, an effect that outlasted the stimulation period, was present in every single patient tested and that correlated with an increment in motor cortical excitability within the affected hemisphere, expressed as increased recruitment curves (RC) and reduced short-interval intracortical inhibition. These results document a beneficial effect of non-invasive cortical stimulation on a set of hand functions that mimic activities of daily living in the paretic hand of patients with chronic stroke, and suggest that this interventional strategy in combination with customary rehabilitative treatments may play an adjuvant role in neurorehabilitation.

1,078 citations


Journal ArticleDOI
TL;DR: It is shown that three additional F box proteins, called AFB1, 2, and 3, also regulate auxin response and collectively mediate auxin responses throughout plant development.

924 citations


Journal ArticleDOI
TL;DR: Osteoblasts grown on modified Ti surfaces exhibited a more differentiated phenotype characterized by increased alkaline phosphatase activity and osteocalcin and generated an osteogenic microenvironment through higher production of PGE2 and TGF-beta1 and 1alpha,25OH2D3 increased these effects in a manner that was synergistic with high surface energy.
Abstract: Titanium (Ti) is used for implantable devices because of its biocompatible oxide surface layer. TiO2 surfaces that have a complex microtopography increase bone-to-implant contact and removal torque forces in vivo and induce osteoblast differentiation in vitro. Studies examining osteoblast response to controlled surface chemistries indicate that hydrophilic surfaces are osteogenic, but TiO2 surfaces produced until now exhibit low surface energy because of adsorbed hydrocarbons and carbonates from the ambient atmosphere or roughness induced hydrophobicity. Novel hydroxylated/hydrated Ti surfaces were used to retain high surface energy of TiO2. Osteoblasts grown on this modified surface exhibited a more differentiated phenotype characterized by increased alkaline phosphatase activity and osteocalcin and generated an osteogenic microenvironment through higher production of PGE2 and TGF-beta1. Moreover, 1alpha,25OH2D3 increased these effects in a manner that was synergistic with high surface energy. This suggests that increased bone formation observed on modified Ti surfaces in vivo is due in part to stimulatory effects of high surface energy on osteoblasts.

844 citations


Journal ArticleDOI
TL;DR: Experimental evaluation confirms that MaltParser can achieve robust, efficient and accurate parsing for a wide range of languages without language-specific enhancements and with rather limited amounts of training data.
Abstract: Parsing unrestricted text is useful for many language technology applications but requires parsing methods that are both robust and efficient. MaltParser is a language-independent system for data-driven dependency parsing that can be used to induce a parser for a new language from a treebank sample in a simple yet flexible manner. Experimental evaluation confirms that MaltParser can achieve robust, efficient and accurate parsing for a wide range of languages without language-specific enhancements and with rather limited amounts of training data.

801 citations


Journal ArticleDOI
TL;DR: It is identified that Plk4 is required — in cooperation with Cdk2, CP110 and Hs-SAS6 — for the precise reproduction of centrosomes during the cell cycle and this findings provide an attractive explanation for the crucial function of PlK4 in cell proliferation.
Abstract: The human Polo-like kinase 1 (PLK1) and its functional homologues that are present in other eukaryotes have multiple, crucial roles in meiotic and mitotic cell division. By contrast, the functions of other mammalian Polo family members remain largely unknown. Plk4 is the most structurally divergent Polo family member; it is maximally expressed in actively dividing tissues and is essential for mouse embryonic development. Here, we identify Plk4 as a key regulator of centriole duplication. Both gain- and loss-of-function experiments demonstrate that Plk4 is required--in cooperation with Cdk2, CP110 and Hs-SAS6--for the precise reproduction of centrosomes during the cell cycle. These findings provide an attractive explanation for the crucial function of Plk4 in cell proliferation and have implications for the role of Polo kinases in tumorigenesis.

797 citations


Journal ArticleDOI
TL;DR: It was found that prefrontal cortex shows stronger phase coupling with posterior sites that are contralateral to the attended hemifield than ipsilateral sites, and that this posterior modulation of alpha activity is controlled by prefrontal regions.
Abstract: Event-related potentials and ongoing oscillatory electroencephalogram (EEG) activity were measured while subjects performed a cued visual spatial attention task. They were instructed to shift their attention to either the left or right visual hemifield according to a cue, which could be vali

Journal ArticleDOI
TL;DR: Understanding CIDS will allow us to work on developing effective therapeutic strategies, with which the outcome after CNS damage by a host of diseases could be improved by eliminating a major determinant of poor recovery.
Abstract: Infections are a leading cause of morbidity and mortality in patients with acute CNS injury. It has recently become clear that CNS injury significantly increases susceptibility to infection by brain-specific mechanisms: CNS injury induces a disturbance of the normally well balanced interplay between the immune system and the CNS. As a result, CNS injury leads to secondary immunodeficiency - CNS injury-induced immunodepression (CIDS) - and infection. CIDS might serve as a model for the study of the mechanisms and mediators of brain control over immunity. More importantly, understanding CIDS will allow us to work on developing effective therapeutic strategies, with which the outcome after CNS damage by a host of diseases could be improved by eliminating a major determinant of poor recovery.

Journal ArticleDOI
30 Jun 2005-Nature
TL;DR: The data imply a previously undescribed mode of plant hormone action: by modulating PIN protein trafficking, auxin regulates PIN abundance and activity at the cell surface, providing a mechanism for the feedback regulation of auxin transport.
Abstract: One of the mechanisms by which signalling molecules regulate cellular behaviour is modulating subcellular protein translocation. This mode of regulation is often based on specialized vesicle trafficking, termed constitutive cycling, which consists of repeated internalization and recycling of proteins to and from the plasma membrane. No such mechanism of hormone action has been shown in plants although several proteins, including the PIN auxin efflux facilitators, exhibit constitutive cycling. Here we show that a major regulator of plant development, auxin, inhibits endocytosis. This effect is specific to biologically active auxins and requires activity of the Calossin-like protein BIG. By inhibiting the internalization step of PIN constitutive cycling, auxin increases levels of PINs at the plasma membrane. Concomitantly, auxin promotes its own efflux from cells by a vesicle-trafficking-dependent mechanism. Furthermore, asymmetric auxin translocation during gravitropism is correlated with decreased PIN internalization. Our data imply a previously undescribed mode of plant hormone action: by modulating PIN protein trafficking, auxin regulates PIN abundance and activity at the cell surface, providing a mechanism for the feedback regulation of auxin transport.

Journal ArticleDOI
TL;DR: A small number of recent studies have suggested that skin and fur-derived predator odors may have a more profound lasting effect on prey species than those derived from urine or feces.

Journal ArticleDOI
TL;DR: This dissociation of emotional and cognitive processing may be the neural basis of the lack of anticipation of aversive events in criminal psychopaths.
Abstract: Context Psychopaths belong to a larger group of persons with antisocial personality disorder and are characterized by an inability to have emotional involvement and by the repeated violation of the rights of others. It was hypothesized that this behavior might be the consequence of deficient fear conditioning. Objective To study the cerebral, peripheral, and subjective correlates of fear conditioning in criminal psychopaths and healthy control subjects. Design An aversive differential pavlovian delay conditioning paradigm with slides of neutral faces serving as conditioned and painful pressure as unconditioned stimuli. Setting The Department of Medical Psychology at the University of Tubingen, Tubingen, Germany. Participants Ten male psychopaths as defined by the Hare Psychopathy Checklist–Revised and 10 age- and education-matched healthy male controls. The psychopaths were criminal offenders on bail and waiting for their trial or were on parole. The healthy controls were recruited from the community. Main Outcome Measures Brain activation based on functional magnetic resonance imaging, electrodermal responses, emotional valence, arousal, and contingency ratings. Results The healthy controls showed enhanced differential activation in the limbic-prefrontal circuit (amygdala, orbitofrontal cortex, insula, and anterior cingulate) during the acquisition of fear and successful verbal and autonomic conditioning. The psychopaths displayed no significant activity in this circuit and failed to show conditioned skin conductance and emotional valence ratings, although contingency and arousal ratings were normal. Conclusion This dissociation of emotional and cognitive processing may be the neural basis of the lack of anticipation of aversive events in criminal psychopaths.

Journal ArticleDOI
TL;DR: A meta-analysis revealed that on average workgroup attachment is stronger than organizational attachment and each form of attachment is most strongly related to potential outcome variables of the same focus as discussed by the authors.

Journal ArticleDOI
TL;DR: Viral genomes were frequently detected in EMBs of patients with systolic left ventricular dysfunction, suggesting that myocardial persistence of various viruses may play a role in the pathogenesis of DCM far more frequently than suspected so far.
Abstract: Background— For a long time, enteroviruses have been considered to be the most common cause of acute viral myocarditis (MC), with possible transition from MC to dilated cardiomyopathy (DCM). Recent investigations have shown, however, that other viruses are also frequently encountered in MC patients, suggesting that persistence of various virus species may play a pathogenic role in the transition from MC to DCM. The purpose of this study was to screen endomyocardial biopsies (EMBs) from patients with “idiopathic” DCM for the presence of viral genomes by using polymerase chain reaction (PCR) to assess the frequency of cardiac viral infections that may be involved in the pathogenesis of the disease. Methods and Results— EMBs were obtained for PCR analysis from 245 consecutive patients (median left ventricular ejection fraction, 35.0%; range, 9% to 59%). PCR and reverse transcription–PCR were performed to detect the genomic sequences of enterovirus (EV), adenovirus (ADV), human cytomegalovirus (HCMV), herpes ...

Journal ArticleDOI
TL;DR: This study illustrates a profound influence of autophagy on the class II peptide repertoire and suggests that this finding has implications for the regulation of CD4+ T cell-mediated processes.
Abstract: MHC–peptide complexes mediate key functions in adaptive immunity. In a classical view, MHC-I molecules present peptides from intracellular source proteins, whereas MHC-II molecules present antigenic peptides from exogenous and membrane proteins. Nevertheless, substantial crosstalk between these two pathways has been observed. We investigated the influence of autophagy on the MHC-II ligandome and demonstrated that peptide presentation is altered considerably upon induction of autophagy. The presentation of peptides from intracellular and lysosomal source proteins was strongly increased on MHC-II in contrast with peptides from membrane and secreted proteins. In addition, autophagy influenced the MHC-II antigen-processing machinery. Our study illustrates a profound influence of autophagy on the class II peptide repertoire and suggests that this finding has implications for the regulation of CD4+ T cell-mediated processes.

Journal ArticleDOI
TL;DR: It is shown that PIN proteins exhibit synergistic interactions, which involve cross-regulation of PIN gene expression in pin mutants or plants with inhibited auxin transport, which might enable the stabilization of auxin gradients and potentially contribute to the robustness of plant adaptive development.
Abstract: Plant development displays an exceptional plasticity and adaptability that involves the dynamic, asymmetric distribution of the phytohormone auxin. Polar auxin flow, which requires polarly localized transport facilitators of the PIN family, largely contributes to the establishment and maintenance of the auxin gradients. Functionally overlapping action of PIN proteins mediates multiple developmental processes, including embryo formation, organ development and tropisms. Here we show that PIN proteins exhibit synergistic interactions, which involve cross-regulation of PIN gene expression in pin mutants or plants with inhibited auxin transport. Auxin itself positively feeds back on PIN gene expression in a tissue-specific manner through an AUX/IAA-dependent signalling pathway. This regulatory switch is indicative of a mechanism by which the loss of a specific PIN protein is compensated for by auxin-dependent ectopic expression of its homologues. The compensatory properties of the PIN-dependent transport network might enable the stabilization of auxin gradients and potentially contribute to the robustness of plant adaptive development.

Journal ArticleDOI
TL;DR: The multi-lingual hypomania checklist (HCL-32) as mentioned in this paper has been developed and is being tested internationally and has been used for self-assessment of hypomanic symptoms.

Journal ArticleDOI
TL;DR: In this paper, various approaches based on bounding volume hierarchies, distance fields and spatial partitioning are discussed for collision detection of deformable objects in interactive environments for surgery simulation and entertainment technology.
Abstract: Interactive environments for dynamically deforming objects play an important role in surgery simulation and entertainment technology. These environments require fast deformable models and very efficient collision handling techniques. While collision detection for rigid bodies is well investigated, collision detection for deformable objects introduces additional challenging problems. This paper focuses on these aspects and summarizes recent research in the area of deformable collision detection. Various approaches based on bounding volume hierarchies, distance fields and spatial partitioning are discussed. In addition, image-space techniques and stochastic methods are considered. Applications in cloth modeling and surgical simulation are presented.

Journal ArticleDOI
TL;DR: The results provide a novel link between mitochondrial dysfunction and neurodegeneration in PD and to a lesser extent, the risk allele of the A141S polymorphism induced mitochondrial dysfunction associated with altered mitochondrial morphology.
Abstract: Recently targeted disruption of Omi/HtrA2 has been found to cause neurodegeneration and a parkinsonian phenotype in mice. Using a candidate gene approach, we performed a mutation screening of the Omi/ HtrA2 gene in German Parkinson's disease (PD) patients. In four patients, we identified a novel heterozygous G399S mutation, which was absent in healthy controls. Moreover, we identified a novel A141S polymorphism that was associated with PD (P < 0.05). Both mutations resulted in defective activation of the protease activity of Omi/HtrA2. Immunohistochemistry and functional analysis in stably transfected cells revealed that S399 mutant Omi/HtrA2 and to a lesser extent, the risk allele of the A141S polymorphism induced mitochondrial dysfunction associated with altered mitochondrial morphology. Cells overexpressing S399 mutant Omi/ HtrA2 were more susceptible to stress-induced cell death than wild-type. On the basis of functional genomics, our results provide a novel link between mitochondrial dysfunction and neurodegeneration in PD.

Journal ArticleDOI
TL;DR: Results suggest that a sensorimotor rhythm–based BCI could help maintain quality of life for people with ALS.
Abstract: People with severe motor disabilities can maintain an acceptable quality of life if they can communicate. Brain-computer interfaces (BCIs), which do not depend on muscle control, can provide communication. Four people severely disabled by ALS learned to operate a BCI with EEG rhythms recorded over sensorimotor cortex. These results suggest that a sensorimotor rhythm-based BCI could help maintain quality of life for people with ALS.

Journal ArticleDOI
TL;DR: The data implicate a novel function of the EGFR during DNA repair processes and radiation-induced activation of DNA-PK, inhibited DNA repair, and increased radiosensitivity of treated cells.

Journal ArticleDOI
TL;DR: Using bead-based technology, multiplex serology enables antibody analyses of large numbers of sera against up to 100 antigens in parallel and has the potential to replace ELISA technology.
Abstract: Background: More than 100 different human papillomaviruses (HPVs) can cause proliferative diseases, many of which are malignant, such as cervical cancer. HPV serology is complex because infection and disease lead to distinct type-specific antibody responses. Using bead-based technology, we have developed an assay platform that allows the simultaneous detection of antibodies against up to 100 in situ affinity–purified recombinant HPV proteins. Methods: Twenty-seven HPV proteins were expressed as glutathione S -transferase fusion proteins and affinity-purified in one step by incubation of glutathione-displaying beads in bacterial lysate. Spectrally distinct bead sets, each carrying one particular antigen, were mixed, incubated with serum, and differentiated in a flow cytometer-like analyzer (xMAP; Luminex Corp). Antibodies bound to the antigens were detected via fluorescent secondary reagents. We studied 756 sera from 2 case-control studies of cervical cancer. Results: Glutathione S -transferase fusion proteins bound with high affinity to glutathione-displaying beads ( K d = 6.9 × 10−9 mol/L). The dynamic range of multiplex serology covered 1.5 orders of magnitude, and antibodies were detected at serum dilutions >1:1 000 000. Imprecision (median CV) was ≤5.4%, and assay reproducibility was high ( R 2 = 0.97). Results on clinical samples showed high concordance with ELISA (κ = 0.846), but multiplex serology exhibited increased detection of weak antibody responses. Antibodies to the E6 oncoproteins of the rare HPV types 52 and 58 were associated with cervical cancer ( P <0.001). Conclusion: Multiplex serology enables antibody analyses of large numbers of sera against up to 100 antigens in parallel and has the potential to replace ELISA technology.

Journal ArticleDOI
01 Nov 2005-Mycoses
TL;DR: Prevention and control of Candida infections might be achieved by pharmacological or immunological tools specifically modulated to inhibit virulence factors, e.g. the family of Saps.
Abstract: Candida albicans is a facultative pathogenic micro-organism that has developed several virulence traits enabling invasion of host tissues and avoidance of host defence mechanisms. Virulence factors that contribute to this process are the hydrolytic enzymes. Most of them are extracellularly secreted by the fungus. The most discussed hydrolytic enzymes produced by C. albicans are secreted aspartic proteinases (Saps). The role of these Saps for C. albicans infections was carefully evaluated in numerous studies, whereas only little is known about the physiological role of the secreted phospholipases (PL) and almost nothing about the involvement of lipases (Lip) in virulence. They may play an important role in the pathogenicity of candidosis and their hydrolytic activity probably has a number of possible functions in addition to the simple role of digesting molecules for nutrition. Saps as the best-studied member of this group of hydrolytic enzymes contribute to host tissue invasion by digesting or destroying cell membranes and by degrading host surface molecules. There is also some evidence that hydrolytic enzymes are able to attack cells and molecules of the host immune system to avoid or resist antimicrobial activity. High hydrolytic activity with broad substrate specificity has been found in several Candida species, most notably in C. albicans. This activity is attributed to multigene families with at least 10 members for Saps and Lips and several members for PL B. Distinct members of these gene families are differentially regulated in various Candida infections. In future, prevention and control of Candida infections might be achieved by pharmacological or immunological tools specifically modulated to inhibit virulence factors, e.g. the family of Saps.

Journal ArticleDOI
TL;DR: The association between genotype and degree of hearing loss in persons with HI and biallelic GJB2 mutations was assessed and two genotypes had significantly more-severe HI than that of 35delG homozygotes.
Abstract: Hearing impairment (HI) affects 1 in 650 newborns, which makes it the most common congenital sensory impairment. Despite extraordinary genetic heterogeneity, mutations in one gene, GJB2, which encodes the connexin 26 protein and is involved in inner ear homeostasis, are found in up to 50% of patients with autosomal recessive nonsyndromic hearing loss. Because of the high frequency of GJB2 mutations, mutation analysis of this gene is widely available as a diagnostic test. In this study, we assessed the association between genotype and degree of hearing loss in persons with HI and biallelic GJB2 mutations. We performed cross-sectional analyses of GJB2 genotype and audiometric data from 1,531 persons, from 16 different countries, with autosomal recessive, mild-to-profound nonsyndromic HI. The median age of all participants was 8 years; 90% of persons were within the age range of 0-26 years. Of the 83 different mutations identified, 47 were classified as nontruncating, and 36 as truncating. A total of 153 different genotypes were found, of which 56 were homozygous truncating (T/T), 30 were homozygous nontruncating (NT/NT), and 67 were compound heterozygous truncating/nontruncating (T/NT). The degree of HI associated with biallelic truncating mutations was significantly more severe than the HI associated with biallelic nontruncating mutations (P<.0001). The HI of 48 different genotypes was less severe than that of 35delG homozygotes. Several common mutations (M34T, V37I, and L90P) were associated with mild-to-moderate HI (median 25-40 dB). Two genotypes--35delG/R143W (median 105 dB) and 35delG/dela(GJB6-D13S1830) (median 108 dB)--had significantly more-severe HI than that of 35delG homozygotes.

Journal ArticleDOI
TL;DR: In this paper, the influence of blood components on fungal growth, morphology and transcript profile during bloodstream infections was investigated, and it was found that neutrophils played a key role in stopping C. albicans growth, enhanced the fungal response to overcome nitrogen and carbohydrate starvation, and induced the expression of a large number of genes involved in the oxidative stress response.
Abstract: Survival in blood and escape from blood vessels into tissues are essential steps for the yeast Candida albicans to cause systemic infections. To elucidate the influence of blood components on fungal growth, morphology and transcript profile during bloodstream infections, we exposed C. albicans to blood, blood fractions enriched in erythrocytes, polymorphonuclear or mononuclear leukocytes, blood depleted of neutrophils and plasma. C. albicans cells exposed to erythrocytes, mononuclear cells, plasma or blood lacking neutrophils were physiologically active and rapidly switched to filamentous growth. In contrast, the presence of neutrophils arrested C. albicans growth, enhanced the fungal response to overcome nitrogen and carbohydrate starvation, and induced the expression of a large number of genes involved in the oxidative stress response. In particular, SOD5, encoding a glycosylphosphatidylinositol (GPI)-anchored superoxide dismutase localized on the cell surface of C. albicans, was strongly expressed in yeast cells that were associated with neutrophils. Mutants lacking key genes involved in oxidative stress, morphology or virulence had significantly reduced survival rates in blood and the neutrophil fraction, but remained viable for at least 1 h of incubation when exposed to erythrocytes, mononuclear cells, plasma or blood lacking neutrophils. These data suggest that C. albicans genes expressed in blood were predominantly induced in response to neutrophils, and that neutrophils play a key role during C. albicans bloodstream infections. However, C. albicans is equipped with several genes and transcriptional programmes, which may help the fungus to counteract the attack of neutrophils, to escape from the bloodstream and to cause systemic infections.

Journal ArticleDOI
TL;DR: Neural representations of numerical information can engage extensive cerebral networks, but the posterior parietal cortex and the prefrontal cortex are the key structures in primates.
Abstract: Numbers are an integral part of our everyday life - we use them to quantify, rank and identify objects. The verbal number concept allows humans to develop superior mathematical and logic skills that define technologically advanced cultures. However, basic numerical competence is rooted in biological primitives that can be explored in animals, infants and human adults alike. We are now beginning to unravel its anatomical basis and neuronal mechanisms on many levels, down to its single neuron correlate. Neural representations of numerical information can engage extensive cerebral networks, but the posterior parietal cortex and the prefrontal cortex are the key structures in primates.

Journal ArticleDOI
TL;DR: Evidence was obtained that formate fermentation, urease activity, the response to oxidative stress, and, as a consequence thereof, acid and ammonium production are up-regulated in a biofilm.
Abstract: It is well known that biofilm formation by pathogenic staphylococci on implanted medical devices leads to "chronic polymer-associated infections." Bacteria in these biofilms are more resistant to antibiotics and the immune defense system than their planktonic counterparts, which suggests that the cells in a biofilm have altered metabolic activity. To determine which genes are up-regulated in Staphylococcus aureus biofilm cells, we carried out a comparative transcriptome analysis. Biofilm growth was simulated on dialysis membranes laid on agar plates. Staphylococci were cultivated planktonically in Erlenmeyer flasks with shaking. mRNA was isolated at five time points from cells grown under both conditions and used for hybridization with DNA microarrays. The gene expression patterns of several gene groups differed under the two growth conditions. In biofilm cells, the cell envelope appeared to be a very active compartment since genes encoding binding proteins, proteins involved in the synthesis of murein and glucosaminoglycan polysaccharide intercellular adhesin, and other enzymes involved in cell envelope synthesis and function were significantly up-regulated. In addition, evidence was obtained that formate fermentation, urease activity, the response to oxidative stress, and, as a consequence thereof, acid and ammonium production are up-regulated in a biofilm. These factors might contribute to survival, persistence, and growth in a biofilm environment. Interestingly, toxins and proteases were up-regulated under planktonic growth conditions. Physiological and biochemical tests for the up-regulation of urease, formate dehydrogenase, proteases, and the synthesis of staphyloxanthin confirmed the microarray data.