scispace - formally typeset
Search or ask a question
Institution

University of Tübingen

EducationTübingen, Germany
About: University of Tübingen is a education organization based out in Tübingen, Germany. It is known for research contribution in the topics: Population & Immune system. The organization has 40555 authors who have published 84108 publications receiving 3015320 citations. The organization is also known as: Eberhard Karls University & Eberhard-Karls-Universität Tübingen.


Papers
More filters
Journal ArticleDOI
TL;DR: By electrically stimulating the cerebellum output and imaging responses with functional magnetic resonance imaging, evoked blood oxygen level-dependant activity is observed not only in the classical cerebellar projection target, the primary motor cortex, but also in a number of additional areas in insular, parietal and occipital cortex, including sensory cortical representations.
Abstract: Increasing evidence has implicated the cerebellum in providing forward models of motor plants predicting the sensory consequences of actions Assuming that cerebellar input to the cerebral cortex contributes to the cerebro-cortical processing by adding forward model signals, we would expect to find projections emphasising motor and sensory cortical areas However, this expectation is only partially met by studies of cerebello–cerebral connections Here we show that by electrically stimulating the cerebellar output and imaging responses with functional magnetic resonance imaging, evoked blood oxygen level-dependant activity is observed not only in the classical cerebellar projection target, the primary motor cortex, but also in a number of additional areas in insular, parietal and occipital cortex, including sensory cortical representations Further probing of the responses reveals a projection system that has been optimized to mediate fast and temporarily precise information In conclusion, both the topography of the stimulation effects and its emphasis on temporal precision are in full accordance with the concept of cerebellar forward model information modulating cerebro-cortical processing The cerebellum has important roles in motor control and sensory perception Sultan and colleagues use electrical stimulation and functional magnetic resonance imaging to reveal that the cerebellum provides inputs to specialized cortical regions of the brain that modulate cerebro-cortical processing

478 citations

Journal ArticleDOI
TL;DR: This document provides a review of the techniques and therapies used in gait rehabilitation after stroke and examines the possible benefits of including assistive robotic devices and brain-computer interfaces in this field, according to a top-down approach, in which rehabilitation is driven by neural plasticity.
Abstract: This document provides a review of the techniques and therapies used in gait rehabilitation after stroke. It also examines the possible benefits of including assistive robotic devices and brain-computer interfaces in this field, according to a top-down approach, in which rehabilitation is driven by neural plasticity. The methods reviewed comprise classical gait rehabilitation techniques (neurophysiological and motor learning approaches), functional electrical stimulation (FES), robotic devices, and brain-computer interfaces (BCI). From the analysis of these approaches, we can draw the following conclusions. Regarding classical rehabilitation techniques, there is insufficient evidence to state that a particular approach is more effective in promoting gait recovery than other. Combination of different rehabilitation strategies seems to be more effective than over-ground gait training alone. Robotic devices need further research to show their suitability for walking training and their effects on over-ground gait. The use of FES combined with different walking retraining strategies has shown to result in improvements in hemiplegic gait. Reports on non-invasive BCIs for stroke recovery are limited to the rehabilitation of upper limbs; however, some works suggest that there might be a common mechanism which influences upper and lower limb recovery simultaneously, independently of the limb chosen for the rehabilitation therapy. Functional near infrared spectroscopy (fNIRS) enables researchers to detect signals from specific regions of the cortex during performance of motor activities for the development of future BCIs. Future research would make possible to analyze the impact of rehabilitation on brain plasticity, in order to adapt treatment resources to meet the needs of each patient and to optimize the recovery process.

478 citations

Journal ArticleDOI
08 Oct 2008-PLOS ONE
TL;DR: A sequencing simulator called MetaSim is introduced that allows the user to simulate individual read datasets that can be used as standardized test scenarios for planning sequencing projects or for benchmarking metagenomic software.
Abstract: Background The new research field of metagenomics is providing exciting insights into various, previously unclassified ecological systems. Next-generation sequencing technologies are producing a rapid increase of environmental data in public databases. There is great need for specialized software solutions and statistical methods for dealing with complex metagenome data sets. Methodology/Principal Findings To facilitate the development and improvement of metagenomic tools and the planning of metagenomic projects, we introduce a sequencing simulator called MetaSim. Our software can be used to generate collections of synthetic reads that reflect the diverse taxonomical composition of typical metagenome data sets. Based on a database of given genomes, the program allows the user to design a metagenome by specifying the number of genomes present at different levels of the NCBI taxonomy, and then to collect reads from the metagenome using a simulation of a number of different sequencing technologies. A population sampler optionally produces evolved sequences based on source genomes and a given evolutionary tree. Conclusions/Significance MetaSim allows the user to simulate individual read datasets that can be used as standardized test scenarios for planning sequencing projects or for benchmarking metagenomic software.

478 citations

Journal ArticleDOI
TL;DR: Simultaneous MR/PET imaging is feasible in humans, opening up new possibilities for the emerging field of molecular imaging.
Abstract: The purpose of this study was to apply a magnetic resonance (MR) imaging‐compatible positron emission tomographic (PET) detector technology for simultaneous MR/ PET imaging of the human brain and skull base. The PET detector ring consists of lutetium oxyorthosilicate (LSO) scintillation crystals in combination with avalanche photodiodes (APDs) mounted in a clinical 3-T MR imager with use of the birdcage transmit/receive head coil. Following phantom studies, two patients were simultaneously examined by using fluorine 18 fluorodeoxyglucose (FDG) PET and MR imaging and spectroscopy. MR/PET data enabled accurate coregistration of morphologic and multifunctional information. Simultaneous MR/PET imaging is feasible in humans, opening up new possibilities for the emerging field of molecular imaging. RSNA, 2008

476 citations

Journal ArticleDOI
TL;DR: The data show that different mutations in CDH23 result in USH1D with a variable retinal phenotype, and it is shown that mutations in the mouse ortholog cause disorganization of inner ear stereocilia and deafness in the waltzer mouse.
Abstract: Usher syndrome type I (USH1) is an autosomal recessive disorder characterized by congenital sensorineural hearing loss, vestibular dysfunction and visual impairment due to early onset retinitis pigmentosa (RP). So far, six loci (USH1A-USH1F) have been mapped, but only two USH1 genes have been identified: MYO7A for USH1B and the gene encoding harmonin for USH1C. We identified a Cuban pedigree linked to the locus for Usher syndrome type 1D (MIM 601067) within the q2 region of chromosome 10). Affected individuals present with congenital deafness and a highly variable degree of retinal degeneration. Using a positional candidate approach, we identified a new member of the cadherin gene superfamily, CDH23. It encodes a protein of 3,354 amino acids with a single transmembrane domain and 27 cadherin repeats. In the Cuban family, we detected two different mutations: a severe course of the retinal disease was observed in individuals homozygous for what is probably a truncating splice-site mutation (c.4488G-->C), whereas mild RP is present in individuals carrying the homozygous missense mutation R1746Q. A variable expression of the retinal phenotype was seen in patients with a combination of both mutations. In addition, we identified two mutations, Delta M1281 and IVS51+5G-->A, in a German USH1 patient. Our data show that different mutations in CDH23 result in USH1D with a variable retinal phenotype. In an accompanying paper, it is shown that mutations in the mouse ortholog cause disorganization of inner ear stereocilia and deafness in the waltzer mouse.

474 citations


Authors

Showing all 41039 results

NameH-indexPapersCitations
John Q. Trojanowski2261467213948
Lily Yeh Jan16246773655
Monique M.B. Breteler15954693762
Wolfgang Wagner1562342123391
Thomas Meitinger155716108491
Hermann Brenner1511765145655
Amartya Sen149689141907
Bernhard Schölkopf1481092149492
Niels Birbaumer14283577853
Detlef Weigel14251684670
Peter Lang140113698592
Marco Colonna13951271166
António Amorim136147796519
Alexis Brice13587083466
Elias Campo13576185160
Network Information
Related Institutions (5)
Heidelberg University
119.1K papers, 4.6M citations

98% related

Ludwig Maximilian University of Munich
161.5K papers, 5.7M citations

98% related

University of Zurich
124K papers, 5.3M citations

95% related

Technische Universität München
123.4K papers, 4M citations

95% related

Radboud University Nijmegen
83K papers, 3.2M citations

94% related

Performance
Metrics
No. of papers from the Institution in previous years
YearPapers
2023206
2022854
20214,701
20204,480
20194,045
20183,634