scispace - formally typeset
Search or ask a question
Institution

University of Tübingen

EducationTübingen, Germany
About: University of Tübingen is a education organization based out in Tübingen, Germany. It is known for research contribution in the topics: Population & Transplantation. The organization has 40555 authors who have published 84108 publications receiving 3015320 citations. The organization is also known as: Eberhard Karls University & Eberhard-Karls-Universität Tübingen.


Papers
More filters
Journal ArticleDOI
TL;DR: This research presents a meta-analysis of 126 existing and new technologies in the gas chromatography field, and some new technologies that are being developed, as well as suggestions for further studies.
Abstract: 2.2. New Approaches 707 2.2.1. Optical Sensor Systems 707 2.2.2. Mass Spectrometry 708 2.2.3. Ion Mobility Spectrometry 708 2.2.4. Gas Chromatography 709 2.2.5. Infrared Spectroscopy 709 2.2.6. Use of Substance-Class-Specific Sensors 709 2.3. Combined Technologies 710 3. Companies 710 4. Application Areas 710 4.1. Food and Beverage 712 4.2. Environmental Monitoring 715 4.3. Disease Diagnosis 716 5. Research and Development Trends 718 5.1. Sample Handling 719 5.2. Filters and Analyte Gas Separation 719 5.3. Data Evaluation 720 6. Conclusion 721 7. References 722

1,266 citations

Posted Content
TL;DR: It is shown that ImageNet-trained CNNs are strongly biased towards recognising textures rather than shapes, which is in stark contrast to human behavioural evidence and reveals fundamentally different classification strategies.
Abstract: Convolutional Neural Networks (CNNs) are commonly thought to recognise objects by learning increasingly complex representations of object shapes. Some recent studies suggest a more important role of image textures. We here put these conflicting hypotheses to a quantitative test by evaluating CNNs and human observers on images with a texture-shape cue conflict. We show that ImageNet-trained CNNs are strongly biased towards recognising textures rather than shapes, which is in stark contrast to human behavioural evidence and reveals fundamentally different classification strategies. We then demonstrate that the same standard architecture (ResNet-50) that learns a texture-based representation on ImageNet is able to learn a shape-based representation instead when trained on "Stylized-ImageNet", a stylized version of ImageNet. This provides a much better fit for human behavioural performance in our well-controlled psychophysical lab setting (nine experiments totalling 48,560 psychophysical trials across 97 observers) and comes with a number of unexpected emergent benefits such as improved object detection performance and previously unseen robustness towards a wide range of image distortions, highlighting advantages of a shape-based representation.

1,264 citations

Journal Article
TL;DR: The epidemiological distinction between the generic term "physical activity" and the specific category of "exercise", which implies activity for a specific purpose such as improvement of physical condition or competition is recognised.
Abstract: An ever-growing volume of peer-reviewed publications speaks to the recent and rapid growth in both scope and understanding of exercise immunology. Indeed, more than 95% of all peer-reviewed publications in exercise immunology (currently >2, 200 publications using search terms "exercise" and "immune") have been published since the formation of the International Society of Exercise and Immunology (ISEI) in 1989 (ISI Web of Knowledge). We recognise the epidemiological distinction between the generic term "physical activity" and the specific category of "exercise", which implies activity for a specific purpose such as improvement of physical condition or competition. Extreme physical activity of any type may have implications for the immune system. However, because of its emotive component, exercise is likely to have a larger effect, and to date the great majority of our knowledge on this subject comes from exercise studies.

1,260 citations

Journal ArticleDOI
TL;DR: Comparisons of statistical tests using both simulated data and data obtained from a sample of stroke patients with disturbed spatial perception suggest that the Liebermeister approach for binomial data is more sensitive than the chi-square test and that a test described by Brunner and Munzel is more appropriate than the t test for nonbinomial data.
Abstract: Measures of brain activation (e.g., changes in scalp electrical potentials) have become the most popular method for inferring brain function. However, examining brain disruption (e.g., examining behavior after brain injury) can complement activation studies. Activation techniques identify regions involved with a task, whereas disruption techniques are able to discover which regions are crucial for a task. Voxel-based lesion mapping can be used to determine relationships between behavioral measures and the location of brain injury, revealing the function of brain regions. Lesion mapping can also correlate the effectiveness of neurosurgery with the location of brain resection, identifying optimal surgical targets. Traditionally, voxel-based lesion mapping has employed the chi-square test when the clinical measure is binomial and the Student's t test when measures are continuous. Here we suggest that the Liebermeister approach for binomial data is more sensitive than the chi-square test. We also suggest that a test described by Brunner and Munzel is more appropriate than the t test for nonbinomial data because clinical and neuropsychological data often violate the assumptions of the t test. We test our hypotheses comparing statistical tests using both simulated data and data obtained from a sample of stroke patients with disturbed spatial perception. We also developed software to implement these tests (MRIcron), made freely available to the scientific community.

1,258 citations

Journal ArticleDOI
TL;DR: This work investigates state-of-the-art methods for inferring whole-genome distances in their ability to mimic DDH and finds that some distance formulas are very robust against missing fractions of genomic information.
Abstract: The pragmatic species concept for Bacteria and Archaea is ultimately based on DNA-DNA hybridization (DDH). While enabling the taxonomist, in principle, to obtain an estimate of the overall similarity between the genomes of two strains, this technique is tedious and error-prone and cannot be used to incrementally build up a comparative database. Recent technological progress in the area of genome sequencing calls for bioinformatics methods to replace the wet-lab DDH by in-silico genome-to-genome comparison. Here we investigate state-of-the-art methods for inferring whole-genome distances in their ability to mimic DDH. Algorithms to efficiently determine high-scoring segment pairs or maximally unique matches perform well as a basis of inferring intergenomic distances. The examined distance functions, which are able to cope with heavily reduced genomes and repetitive sequence regions, outperform previously described ones regarding the correlation with and error ratios in emulating DDH. Simulation of incompletely sequenced genomes indicates that some distance formulas are very robust against missing fractions of genomic information. Digitally derived genome-to-genome distances show a better correlation with 16S rRNA gene sequence distances than DDH values. The future perspectives of genome-informed taxonomy are discussed, and the investigated methods are made available as a web service for genome-based species delineation.

1,256 citations


Authors

Showing all 41039 results

NameH-indexPapersCitations
John Q. Trojanowski2261467213948
Lily Yeh Jan16246773655
Monique M.B. Breteler15954693762
Wolfgang Wagner1562342123391
Thomas Meitinger155716108491
Hermann Brenner1511765145655
Amartya Sen149689141907
Bernhard Schölkopf1481092149492
Niels Birbaumer14283577853
Detlef Weigel14251684670
Peter Lang140113698592
Marco Colonna13951271166
António Amorim136147796519
Alexis Brice13587083466
Elias Campo13576185160
Network Information
Related Institutions (5)
Heidelberg University
119.1K papers, 4.6M citations

98% related

Ludwig Maximilian University of Munich
161.5K papers, 5.7M citations

98% related

University of Zurich
124K papers, 5.3M citations

95% related

Technische Universität München
123.4K papers, 4M citations

95% related

Radboud University Nijmegen
83K papers, 3.2M citations

94% related

Performance
Metrics
No. of papers from the Institution in previous years
YearPapers
2023206
2022854
20214,700
20204,480
20194,045
20183,634