scispace - formally typeset
Search or ask a question
Institution

University of Tübingen

EducationTübingen, Germany
About: University of Tübingen is a education organization based out in Tübingen, Germany. It is known for research contribution in the topics: Population & Immune system. The organization has 40555 authors who have published 84108 publications receiving 3015320 citations. The organization is also known as: Eberhard Karls University & Eberhard-Karls-Universität Tübingen.


Papers
More filters
Journal ArticleDOI
TL;DR: A meta-analysis revealed that on average workgroup attachment is stronger than organizational attachment and each form of attachment is most strongly related to potential outcome variables of the same focus as discussed by the authors.

661 citations

Journal ArticleDOI
TL;DR: The serum- and glucocorticoid-inducible kinase-1 (SGK1) is ubiquitously expressed and under genomic control by cell stress and hormones, and may play an active role in a multitude of pathophysiological conditions.
Abstract: The serum- and glucocorticoid-inducible kinase-1 (SGK1) is ubiquitously expressed and under genomic control by cell stress (including cell shrinkage) and hormones (including gluco- and mineralocort...

658 citations

Journal ArticleDOI
15 Jun 1998-Blood
TL;DR: It is concluded that CXCR-4 is expressed on CD34+ cells including more primitive, pluripotent progenitors, and may therefore play a role in the homing of hematopoietic stem cells.

657 citations

Journal ArticleDOI
TL;DR: Stabilization of β-cat in primary brain endothelial cells (ECs) in vitro by N-terminal truncation or Wnt3a treatment increases Cldn3 expression, BBB-type tight junction formation, and a BBB characteristic gene signature, and this findings may open new therapeutic avenues to modulate endothelial barrier function.
Abstract: The blood–brain barrier (BBB) is confined to the endothelium of brain capillaries and is indispensable for fluid homeostasis and neuronal function. In this study, we show that endothelial Wnt/β-catenin (β-cat) signaling regulates induction and maintenance of BBB characteristics during embryonic and postnatal development. Endothelial specific stabilization of β-cat in vivo enhances barrier maturation, whereas inactivation of β-cat causes significant down-regulation of claudin3 (Cldn3), up-regulation of plamalemma vesicle-associated protein, and BBB breakdown. Stabilization of β-cat in primary brain endothelial cells (ECs) in vitro by N-terminal truncation or Wnt3a treatment increases Cldn3 expression, BBB-type tight junction formation, and a BBB characteristic gene signature. Loss of β-cat or inhibition of its signaling abrogates this effect. Furthermore, stabilization of β-cat also increased Cldn3 and barrier properties in nonbrain-derived ECs. These findings may open new therapeutic avenues to modulate endothelial barrier function and to limit the devastating effects of BBB breakdown.

657 citations

Journal ArticleDOI
David T.W. Jones1, Barbara Hutter1, Natalie Jäger1, Andrey Korshunov1, Andrey Korshunov2, Marcel Kool1, Hans-Jörg Warnatz3, Thomas Zichner, Sally R. Lambert4, Marina Ryzhova5, Dong Anh Khuong Quang6, Adam M. Fontebasso6, Adrian M. Stütz, Sonja Hutter1, Marc Zuckermann1, Dominik Sturm1, Jan Gronych1, Bärbel Lasitschka1, Sabine Schmidt1, Huriye Seker-Cin1, Hendrik Witt1, Hendrik Witt2, Marc Sultan3, Meryem Ralser3, Paul A. Northcott1, Volker Hovestadt1, Sebastian Bender1, Elke Pfaff1, Sebastian Stark1, Damien Faury6, Jeremy Schwartzentruber6, Jacek Majewski6, Ursula D. Weber1, Marc Zapatka1, Benjamin Raeder, Matthias Schlesner1, Catherine L. Worth3, Cynthia C. Bartholomae1, Christof von Kalle1, Charles D. Imbusch1, S. Radomski2, S. Radomski1, Chris Lawerenz1, Peter van Sluis7, Jan Koster7, Richard Volckmann7, Rogier Versteeg7, Hans Lehrach3, Camelia M. Monoranu8, Beate Winkler8, Andreas Unterberg2, Christel Herold-Mende9, Till Milde1, Till Milde2, Andreas E. Kulozik2, Martin Ebinger10, Martin U. Schuhmann10, Yoon Jae Cho11, Scott L. Pomeroy12, Scott L. Pomeroy13, Andreas von Deimling2, Andreas von Deimling1, Olaf Witt2, Olaf Witt1, Michael D. Taylor14, Stephan Wolf1, Matthias A. Karajannis15, Charles G. Eberhart16, Wolfram Scheurlen17, Martin Hasselblatt18, Keith L. Ligon13, Mark W. Kieran13, Jan O. Korbel, Marie-Laure Yaspo3, Benedikt Brors1, Jörg Felsberg19, Guido Reifenberger19, V. Peter Collins4, Nada Jabado20, Nada Jabado6, Roland Eils1, Roland Eils2, Peter Lichter1 
TL;DR: Recurrent activating mutations in FGFR1 and PTPN11 and new NTRK2 fusion genes in non-cerebellar tumors and new BRAF-activating changes were observed, indicating that pilocytic astrocytoma is predominantly a single-pathway disease.
Abstract: Pilocytic astrocytoma, the most common childhood brain tumor, is typically associated with mitogen-activated protein kinase (MAPK) pathway alterations. Surgically inaccessible midline tumors are therapeutically challenging, showing sustained tendency for progression and often becoming a chronic disease with substantial morbidities. Here we describe whole-genome sequencing of 96 pilocytic astrocytomas, with matched RNA sequencing (n = 73), conducted by the International Cancer Genome Consortium (ICGC) PedBrain Tumor Project. We identified recurrent activating mutations in FGFR1 and PTPN11 and new NTRK2 fusion genes in non-cerebellar tumors. New BRAF-activating changes were also observed. MAPK pathway alterations affected all tumors analyzed, with no other significant mutations identified, indicating that pilocytic astrocytoma is predominantly a single-pathway disease. Notably, we identified the same FGFR1 mutations in a subset of H3F3A-mutated pediatric glioblastoma with additional alterations in the NF1 gene. Our findings thus identify new potential therapeutic targets in distinct subsets of pilocytic astrocytoma and childhood glioblastoma.

657 citations


Authors

Showing all 41039 results

NameH-indexPapersCitations
John Q. Trojanowski2261467213948
Lily Yeh Jan16246773655
Monique M.B. Breteler15954693762
Wolfgang Wagner1562342123391
Thomas Meitinger155716108491
Hermann Brenner1511765145655
Amartya Sen149689141907
Bernhard Schölkopf1481092149492
Niels Birbaumer14283577853
Detlef Weigel14251684670
Peter Lang140113698592
Marco Colonna13951271166
António Amorim136147796519
Alexis Brice13587083466
Elias Campo13576185160
Network Information
Related Institutions (5)
Heidelberg University
119.1K papers, 4.6M citations

98% related

Ludwig Maximilian University of Munich
161.5K papers, 5.7M citations

98% related

University of Zurich
124K papers, 5.3M citations

95% related

Technische Universität München
123.4K papers, 4M citations

95% related

Radboud University Nijmegen
83K papers, 3.2M citations

94% related

Performance
Metrics
No. of papers from the Institution in previous years
YearPapers
2023206
2022854
20214,701
20204,480
20194,045
20183,634