scispace - formally typeset
Search or ask a question
Institution

University of Tübingen

EducationTübingen, Germany
About: University of Tübingen is a education organization based out in Tübingen, Germany. It is known for research contribution in the topics: Population & Immune system. The organization has 40555 authors who have published 84108 publications receiving 3015320 citations. The organization is also known as: Eberhard Karls University & Eberhard-Karls-Universität Tübingen.


Papers
More filters
Journal ArticleDOI
TL;DR: The theory that many chronic neurodegenerative diseases can originate and progress via the seeded corruption of misfolded proteins has the potential to unify experimental and translational approaches to these increasingly prevalent disorders.
Abstract: The misfolding and aggregation of specific proteins is a seminal occurrence in a remarkable variety of neurodegenerative disorders. In Alzheimer’s disease (the most prevalent cerebral proteopathy), the two principal aggregating proteins are β-amyloid (Aβ) and tau. The abnormal assemblies formed by conformational variants of these proteins range in size from small oligomers to the characteristic lesions that are visible by optical microscopy, such as senile plaques and neurofibrillary tangles. Pathologic similarities with prion disease suggest that the formation and spread of these proteinaceous lesions might involve a common molecular mechanism – corruptive protein templating. Experimentally, cerebral β-amyloidosis can be exogenously induced by exposure to dilute brain extracts containing aggregated Aβ seeds. The amyloid-inducing agent probably is Aβ itself, in a conformation generated most effectively in the living brain. Once initiated, Aβ lesions proliferate within and among brain regions. The induction process is governed by the structural and biochemical nature of the Aβ seed, as well as the attributes of the host, reminiscent of pathogenically variant prion strains. The concept of prion-like induction and spreading of pathogenic proteins recently has been expanded to include aggregates of tau, α-synuclein, huntingtin, superoxide dismutase-1, and TDP-43, which characterize such human neurodegenerative disorders as frontotemporal lobar degeneration, Parkinson’s/Lewy body disease, Huntington’s disease, and amyotrophic lateral sclerosis. Our recent finding that the most effective Aβ seeds are small and soluble intensifies the search in bodily fluids for misfolded protein seeds that are upstream in the proteopathic cascade, and thus could serve as predictive diagnostics and the targets of early, mechanism-based interventions. Establishing the clinical implications of corruptive protein templating will require further mechanistic and epidemiologic investigations. However, the theory that many chronic neurodegenerative diseases can originate and progress via the seeded corruption of misfolded proteins has the potential to unify experimental and translational approaches to these increasingly prevalent disorders.

573 citations

Journal ArticleDOI
TL;DR: Results on the export of GSH and GSSG from brain cells as well as on the functions of extracellular GSH in the brain are reviewed and implications of disturbed GSH pathways in brain for neurodegenerative diseases will be discussed.
Abstract: The antioxidant glutathione (GSH) is essential for the cellular detoxification of reactive oxygen species in brain cells. A compromised GSH system in the brain has been connected with the oxidative stress occuring in neurological diseases. Recent data demonstrate that besides intracellular functions GSH has also important extracellular functions in brain. In this respect astrocytes appear to play a key role in the GSH metabolism of the brain, since astroglial GSH export is essential for providing GSH precursors to neurons. Of the different brain cell types studied in vitro only astrocytes release substantial amounts of GSH. In addition, during oxidative stress astrocytes efficiently export glutathione disulfide (GSSG). The multidrug resistance protein 1 participates in both the export of GSH and GSSG from astrocytes. This review focuses on recent results on the export of GSH and GSSG from brain cells as well as on the functions of extracellular GSH in the brain. In addition, implications of disturbed GSH pathways in brain for neurodegenerative diseases will be discussed.

572 citations

Journal ArticleDOI
TL;DR: It is hypothesized that a profound knowledge and consideration of psychological principles are necessary to make brain-computer interfaces feasible for locked-in patients.
Abstract: With the increasing efficiency of life-support systems and better intensive care, more patients survive severe injuries of the brain and spinal cord. Many of these patients experience locked-in syndrome: The active mind is locked in a paralyzed body. Consequently, communication is extremely restricted or impossible. A muscle-independent communication channel overcomes this problem and is realized through a brain-computer interface, a direct connection between brain and computer. The number of technically elaborated brain-computer interfaces is in contrast with the number of systems used in the daily life of locked-in patients. It is hypothesized that a profound knowledge and consideration of psychological principles are necessary to make brain-computer interfaces feasible for locked-in patients.

572 citations

Journal ArticleDOI
TL;DR: A bimodal balance–recovery model is suggested that links interhemispheric balancing and functional recovery to the structural reserve spared by the lesion, which could enable NIBS to be tailored to the needs of individual patients.
Abstract: Noninvasive brain stimulation (NIBS) techniques can be used to monitor and modulate the excitability of intracortical neuronal circuits. Long periods of cortical stimulation can produce lasting effects on brain function, paving the way for therapeutic applications of NIBS in chronic neurological disease. The potential of NIBS in stroke rehabilitation has been of particular interest, because stroke is the main cause of permanent disability in industrial nations, and treatment outcomes often fail to meet the expectations of patients. Despite promising reports from many clinical trials on NIBS for stroke recovery, the number of studies reporting a null effect remains a concern. One possible explanation is that the interhemispheric competition model--which posits that suppressing the excitability of the hemisphere not affected by stroke will enhance recovery by reducing interhemispheric inhibition of the stroke hemisphere, and forms the rationale for many studies--is oversimplified or even incorrect. Here, we critically review the proposed mechanisms of synaptic and functional reorganization after stroke, and suggest a bimodal balance-recovery model that links interhemispheric balancing and functional recovery to the structural reserve spared by the lesion. The proposed model could enable NIBS to be tailored to the needs of individual patients.

570 citations

Journal ArticleDOI
Douglas M. Ruderfer1, Stephan Ripke2, Stephan Ripke3, Stephan Ripke4  +628 moreInstitutions (156)
14 Jun 2018-Cell
TL;DR: For the first time, specific loci that distinguish between BD and SCZ are discovered and polygenic components underlying multiple symptom dimensions are identified that point to the utility of genetics to inform symptomology and potential treatment.

569 citations


Authors

Showing all 41039 results

NameH-indexPapersCitations
John Q. Trojanowski2261467213948
Lily Yeh Jan16246773655
Monique M.B. Breteler15954693762
Wolfgang Wagner1562342123391
Thomas Meitinger155716108491
Hermann Brenner1511765145655
Amartya Sen149689141907
Bernhard Schölkopf1481092149492
Niels Birbaumer14283577853
Detlef Weigel14251684670
Peter Lang140113698592
Marco Colonna13951271166
António Amorim136147796519
Alexis Brice13587083466
Elias Campo13576185160
Network Information
Related Institutions (5)
Heidelberg University
119.1K papers, 4.6M citations

98% related

Ludwig Maximilian University of Munich
161.5K papers, 5.7M citations

98% related

University of Zurich
124K papers, 5.3M citations

95% related

Technische Universität München
123.4K papers, 4M citations

95% related

Radboud University Nijmegen
83K papers, 3.2M citations

94% related

Performance
Metrics
No. of papers from the Institution in previous years
YearPapers
2023206
2022854
20214,701
20204,480
20194,045
20183,634