scispace - formally typeset
Search or ask a question
Institution

University of Turin

EducationTurin, Piemonte, Italy
About: University of Turin is a education organization based out in Turin, Piemonte, Italy. It is known for research contribution in the topics: Population & Cancer. The organization has 29607 authors who have published 77952 publications receiving 2480900 citations. The organization is also known as: Universita degli Studi di Torino & Università degli Studi di Torino.


Papers
More filters
Journal ArticleDOI
TL;DR: A pluripotent progenitor population in adult human liver that could provide a basis for cell therapy strategies is identified and characterized by stringent conditions of liver cell cultures.
Abstract: Several studies suggested the presence of stem cells in the adult normal human liver; however, a population with stem cell properties has not yet been isolated. The purpose of the present study was to identify and characterize progenitor cells in normal adult human liver. By stringent conditions of liver cell cultures, we isolated and characterized a population of human liver stem cells (HLSCs). HLSCs expressed the mesenchymal stem cell markers CD29, CD73, CD44, and CD90 but not the hematopoietic stem cell markers CD34, CD45, CD117, and CD133. HLSCs were also positive for vimentin and nestin, a stem cell marker. The absence of staining for cytokeratin-19, CD117, and CD34 indicated that HLSCs were not oval stem cells. In addition, HLSCs expressed albumin, alpha-fetoprotein, and in a small percentage of cells, cytokeratin-8 and cytokeratin-18, indicating a partial commitment to hepatic cells. HLSCs differentiated in mature hepatocytes when cultured in the presence of hepatocyte growth factor and fibroblast growth factor 4, as indicated by the expression of functional cytochrome P450, albumin, and urea production. Under this condition, HLSCs downregulated alpha-fetoprotein and expressed cytokeratin-8 and cytokeratin-18. HLSCs were also able to undergo osteogenic and endothelial differentiation when cultured in the appropriated differentiation media, but they did not undergo lipogenic differentiation. Moreover, HLSCs differentiated in insulin-producing islet-like structures. In vivo, HLSCs contributed to regeneration of the liver parenchyma in severe-combined immunodeficient mice. In conclusion, we here identified a pluripotent progenitor population in adult human liver that could provide a basis for cell therapy strategies.

414 citations

Journal ArticleDOI
TL;DR: Although candesartan reduces the incidence of retinopathy, it did not see a beneficial effect on retInopathy progression, and the post-hoc outcome of at least a three-step increase for incidence yielded an HR of 0.65.

414 citations

Journal ArticleDOI
Adrian John Bevan1, B. Golob2, Th. Mannel3, S. Prell4  +2061 moreInstitutions (171)
TL;DR: The physics of the SLAC and KEK B Factories are described in this paper, with a brief description of the detectors, BaBar and Belle, and data taking related issues.
Abstract: This work is on the Physics of the B Factories. Part A of this book contains a brief description of the SLAC and KEK B Factories as well as their detectors, BaBar and Belle, and data taking related issues. Part B discusses tools and methods used by the experiments in order to obtain results. The results themselves can be found in Part C.

413 citations

Journal ArticleDOI
TL;DR: A survey of the differentiation potential of these NSCs outlines their extreme plasticity that seems to outstretch the brain boundaries, so that these neuroectodermal stem cells may give rise to cells that derive from developmentally distinct tissues.
Abstract: This review focuses on the nature and functional properties of stem cells of the adult mammalian central nervous system (CNS). It has recently been shown that cell turnover, including neurons, does occur in the mature CNS, thanks to the persistence of precursor cells that possess the functional characteristics of bona-fide neural stem cells (NSCs) within restricted brain areas. We discuss how the subventricular zone of the forebrain (SVZ) is the most active neurogenetic area and the richest source of NSCs. These NSCs ensure a life-long contribution of new neurons to the olfactory bulb and, when placed in culture, can be grown and extensively expanded for months, allowing the generation of stem cell lines, which maintain stable and constant functional properties. A survey of the differentiation potential of these NSCs, both in vitro and in vivo, outlines their extreme plasticity that seems to outstretch the brain boundaries, so that these neuroectodermal stem cells may give rise to cells that derive from developmentally distinct tissues. A critical discussion of the latest, controversial findings regarding this surprising phenomenon is provided.

412 citations

Journal ArticleDOI
TL;DR: In this paper, the authors present results on the X-ray properties of clusters and groups of galaxies, extracted from a large cosmological hydrodynamical simulation, using the TREE+SPH code GADGET to simulate a concordance A cold dark matter cosmology model within a box of 192 h -1 Mpc on a side, 480 3 dark matter particles and as many gas particles.
Abstract: We present results on the X-ray properties of clusters and groups of galaxies, extracted from a large cosmological hydrodynamical simulation. We used the TREE+SPH code GADGET to simulate a concordance A cold dark matter cosmological model within a box of 192 h -1 Mpc on a side, 480 3 dark matter particles and as many gas particles. The simulation includes radiative cooling assuming zero metallicity, star formation and supernova feedback. The very high dynamic range of the simulation allows us to cover a fairly large interval of cluster temperatures. We compute X-ray observables of the intracluster medium (ICM) for simulated groups and clusters and analyse their statistical properties. The simulated mass-temperature relation is consistent with observations once we mimic the procedure for mass estimates applied to real clusters. Also, with the adopted choices of Ω m = 0.3 and σ 8 = 0.8 for matter density and power spectrum normalization, respectively, the resulting X-ray temperature functton agrees with the most recent observational determinations. The luminosity-temperature relation also agrees with observations for clusters with T ≥ 2 keV. At the scale of groups, T ≥ 1 keV, we find no change of slope in this relation. The entropy in central cluster regions is higher than predicted by gravitational heating alone, the excess being almost the same for clusters and groups. We also find that the simulated clusters appear to have suffered some overcooling. We find f * ≃ 0.2 for the fraction of baryons in stars within clusters, thus approximately twice as large as the value observed. Interestingly, temperature profiles of simulated clusters are found to increase steadily toward cluster centres. They decrease in the outer regions, much like observational data do at r ≥ 0.2r vir , while not showing an isothermal regime followed by a smooth temperature decline in the innermost regions. Our results thus demonstrate the need for yet more efficient sources of energy feedback and/or the need to consider additional physical process which may be able to further suppress the gas density at the scale of poor clusters and groups, and, at the same time, to regulate the cooling of the ICM in central regions.

412 citations


Authors

Showing all 30045 results

NameH-indexPapersCitations
Michael Grätzel2481423303599
Lewis C. Cantley196748169037
Kenneth C. Anderson1781138126072
Elio Riboli1581136110499
Giacomo Bruno1581687124368
Silvia Franceschi1551340112504
Thomas E. Starzl150162591704
Paolo Boffetta148145593876
Marco Costa1461458105096
Pier Paolo Pandolfi14652988334
Andrew Ivanov142181297390
Chiara Mariotti141142698157
Tomas Ganz14148073316
Jean-Pierre Changeux13867276462
Dong-Chul Son138137098686
Network Information
Related Institutions (5)
University of Milan
139.7K papers, 4.6M citations

98% related

Sapienza University of Rome
155.4K papers, 4.3M citations

97% related

University of Padua
114.8K papers, 3.6M citations

97% related

University of Bologna
115.1K papers, 3.4M citations

96% related

Utrecht University
139.3K papers, 6.2M citations

94% related

Performance
Metrics
No. of papers from the Institution in previous years
YearPapers
2023202
2022623
20215,733
20205,428
20194,544
20184,233