scispace - formally typeset
Search or ask a question
Institution

University of Turin

EducationTurin, Piemonte, Italy
About: University of Turin is a education organization based out in Turin, Piemonte, Italy. It is known for research contribution in the topics: Population & Cancer. The organization has 29607 authors who have published 77952 publications receiving 2480900 citations. The organization is also known as: Universita degli Studi di Torino & Università degli Studi di Torino.


Papers
More filters
Journal ArticleDOI
TL;DR: In this paper, the authors discuss some cosmological and astrophysical applications where the issues related to the dark components are addressed by enlarging the Einstein theory to more general f (R) Lagrangians, where f(R) is a generic function of Ricci scalar R, not assumed simply linear.
Abstract: Astrophysical observations are pointing out huge amounts of “dark matter” and “dark energy” needed to explain the observed large scale structure and cosmic dynamics. The emerging picture is a spatially flat, homogeneous Universe undergoing the today observed accelerated phase. Despite of the good quality of astrophysical surveys, commonly addressed as Precision Cosmology, the nature and the nurture of dark energy and dark matter, which should constitute the bulk of cosmological matter-energy, are still unknown. Furthermore, up to now, no experimental evidence has been found, at fundamental level, to explain such mysterious components. The problem could be completely reversed considering dark matter and dark energy as “shortcomings” of General Relativity in its simplest formulation (a linear theory in the Ricci scalar R, minimally coupled to the standard perfect fluid matter) and claiming for the “correct” theory of gravity as that derived by matching the largest number of observational data, without imposing any theory a priori. As a working hypothesis, accelerating behavior of cosmic fluid, large scale structure, potential of galaxy clusters, rotation curves of spiral galaxies could be reproduced by means of extending the standard theory of General Relativity. In other words, gravity could acts in different ways at different scales and the above “shortcomings” could be due to incorrect extrapolations of the Einstein gravity, actually tested at short scales and low energy regimes. After a survey of what is intended for Extended Theories of Gravity in the so called “metric” and “Palatini” approaches, we discuss some cosmological and astrophysical applications where the issues related to the dark components are addressed by enlarging the Einstein theory to more general f (R) Lagrangians, where f (R) is a generic function of Ricci scalar R, not assumed simply linear. Obviously, this is not the final answer to the problem of “dark-components” but it can be considered as an operative scheme whose aim is to avoid the addition of unknown exotic ingredients to the cosmic pie.

907 citations

Journal ArticleDOI
TL;DR: The globular domain structural organization of monomeric HSA is at the root of its allosteric properties which are reminiscent of those of multimeric proteins.
Abstract: Human serum albumin (HSA), the most prominent protein in plasma, binds different classes of ligands at multiple sites HSA provides a depot for many compounds, affects pharmacokinetics of many drugs, holds some ligands in a strained orientation providing their metabolic modification, renders potential toxins harmless transporting them to disposal sites, accounts for most of the antioxidant capacity of human serum, and acts as a NO-carrier The globular domain structural organization of monomeric HSA is at the root of its allosteric properties which are reminiscent of those of multimeric proteins Here, structural, functional, biotechnological, and biomedical aspects of ligand binding to HSA are summarized

903 citations

Journal ArticleDOI
TL;DR: In this paper, the authors summarize the observed metal-poor star abundances, contrasting them with the Solar-system values, comparing them to theoretical predictions, and using them to assess the types of stars responsible for their specific anomalies, and speculating on the timing and nature of early Galactic nucleosynthesis.
Abstract: The content of neutron-capture (trans-iron-peak) elements in the lowmetallicity Galactic halo varies widely from star to star. The differences are both in bulk amount of the neutron-capture elements with respect to lighter ones and in element-to-element ratios among themselves. Several well-defined abundance distributions have emerged that reveal characteristic rapid and slow neutron-capture nucleosynthesis patterns. In this review we summarize these observed metal-poor star’s abundances, contrasting them with the Solar-system values, comparing them to theoretical predictions, using them to assess the types of stars responsible for their specific anomalies, and speculating on the timing and nature of early Galactic nucleosynthesis.

901 citations

Journal ArticleDOI
TL;DR: Recently improved information on the stellar (n, γ) cross sections of neutron magic nuclei at N = 82, and in particular of 142Nd, turn out to represent a sensitive test for models of s-process nucleosynthesis as mentioned in this paper.
Abstract: Recently improved information on the stellar (n, γ) cross sections of neutron magic nuclei at N = 82, and in particular of 142Nd, turn out to represent a sensitive test for models of s-process nucleosynthesis. While these data were found to be incompatible with the classical approach based on an exponential distribution of neutron exposures, they provide significantly better agreement between the solar abundance distribution of s nuclei and the predictions of models for low-mass asymptotic giant branch (AGB) stars. The origin of this phenomenon is identified as lying in the high neutron exposures at low neutron density obtained between thermal pulses when 13C burns radiatively in a narrow layer of a few 10-4 M☉. This effect is studied in some detail, and the influence of the currently available nuclear physics data is discussed with respect to specific further questions. In this context, particular attention is paid to a consistent description of s-process branchings in the region of the rare earth elements. It is shown that, in certain cases, the nuclear data are sufficiently accurate that the resulting abundance uncertainties can be completely attributed to stellar modeling. Thus, the s-process becomes important for testing the role of different stellar masses and metallicities as well as for constraining the assumptions used in describing the low neutron density provided by the 13C source.

898 citations


Authors

Showing all 30045 results

NameH-indexPapersCitations
Michael Grätzel2481423303599
Lewis C. Cantley196748169037
Kenneth C. Anderson1781138126072
Elio Riboli1581136110499
Giacomo Bruno1581687124368
Silvia Franceschi1551340112504
Thomas E. Starzl150162591704
Paolo Boffetta148145593876
Marco Costa1461458105096
Pier Paolo Pandolfi14652988334
Andrew Ivanov142181297390
Chiara Mariotti141142698157
Tomas Ganz14148073316
Jean-Pierre Changeux13867276462
Dong-Chul Son138137098686
Network Information
Related Institutions (5)
University of Milan
139.7K papers, 4.6M citations

98% related

Sapienza University of Rome
155.4K papers, 4.3M citations

97% related

University of Padua
114.8K papers, 3.6M citations

97% related

University of Bologna
115.1K papers, 3.4M citations

96% related

Utrecht University
139.3K papers, 6.2M citations

94% related

Performance
Metrics
No. of papers from the Institution in previous years
YearPapers
2023202
2022623
20215,733
20205,428
20194,544
20184,233