scispace - formally typeset
Search or ask a question
Institution

University of Turku

EducationTurku, Finland
About: University of Turku is a education organization based out in Turku, Finland. It is known for research contribution in the topics: Population & Galaxy. The organization has 16296 authors who have published 45124 publications receiving 1505428 citations. The organization is also known as: Turun yliopisto & Åbo universitet.


Papers
More filters
Journal ArticleDOI
TL;DR: The low D2 dopamine receptor Bmax/Kd ratio (striatum/cerebellum ratio) indicates that specific aspects of striatal [11C]raclopride binding in vivo are deviant in alcoholics compared to controls, in line with the idea that D2 dopaminergic mechanisms are involved in the biology of alcohol dependence in man.
Abstract: Striatal D2 dopamine receptor characteristics of nine male patients with alcohol dependence abstinent for 1–68 weeks and eight healthy male volunteers were studied in vivo with positron emission tomography. The selective D2 receptor ligand [11C]raclopride and equilibrium model was used for D2 receptor density (Bmax) and affinity (Kd) measurements. A trend for a decreased striatal D2 receptor density and for reduced D2 receptor affinity was observed in patients with alcohol dependence. These parameters were not statistically significantly different between alcoholics and controls, but the ratio between D2 receptor density and affinity (Bmax/Kd or the striatum/cerebellum ratio from the high specific activity scan) was highly significantly lower in alcoholics than that of controls. In conclusion, the low D2 dopamine receptor Bmax/Kd ratio (striatum/cerebellum ratio) indicates that specific aspects of striatal [11C]raclopride binding in vivo are deviant in alcoholics compared to controls. The result is compatible with a reduced avidity of striatal dopamine D2 receptors in alcoholics, which is in line with the idea that D2 dopaminergic mechanisms are involved in the biology of alcohol dependence in man.

261 citations

Journal ArticleDOI
TL;DR: It is found that mutations in SEC63, encoding a component of the protein translocation machinery in the ER, also cause this disease, suggestive of a role for cotranslational protein-processing pathways in maintaining epithelial luminal structure and implicate noncilial ER proteins in human polycystic disease.
Abstract: Mutations in PRKCSH, encoding the beta-subunit of glucosidase II, an N-linked glycan-processing enzyme in the endoplasmic reticulum (ER), cause autosomal dominant polycystic liver disease. We found that mutations in SEC63, encoding a component of the protein translocation machinery in the ER, also cause this disease. These findings are suggestive of a role for cotranslational protein-processing pathways in maintaining epithelial luminal structure and implicate noncilial ER proteins in human polycystic disease.

261 citations

Journal ArticleDOI
TL;DR: It is found that specific blood RNA profiles of infants with RSV LRTI allowed for specific diagnosis, better understanding of disease pathogenesis, and better assessment of disease severity.
Abstract: Background Respiratory syncytial virus (RSV) is the leading cause of viral lower respiratory tract infection (LRTI) and hospitalization in infants. Mostly because of the incomplete understanding of the disease pathogenesis, there is no licensed vaccine, and treatment remains symptomatic. We analyzed whole blood transcriptional profiles to characterize the global host immune response to acute RSV LRTI in infants, to characterize its specificity compared with influenza and human rhinovirus (HRV) LRTI, and to identify biomarkers that can objectively assess RSV disease severity. Methods and Findings This was a prospective observational study over six respiratory seasons including a cohort of infants hospitalized with RSV (n = 135), HRV (n = 30), and influenza (n = 16) LRTI, and healthy age- and sex-matched controls (n = 39). A specific RSV transcriptional profile was identified in whole blood (training cohort, n = 45 infants; Dallas, Texas, US) and validated in three different cohorts (test cohort, n = 46, Dallas, Texas, US; validation cohort A, n = 16, Turku, Finland; validation cohort B, n = 28, Columbus, Ohio, US) with high sensitivity (94% [95% CI 87%–98%]) and specificity (98% [95% CI 88%–99%]). It classified infants with RSV LRTI versus HRV or influenza LRTI with 95% accuracy. The immune dysregulation induced by RSV (overexpression of neutrophil, inflammation, and interferon genes, and suppression of T and B cell genes) persisted beyond the acute disease, and immune dysregulation was greatly impaired in younger infants (<6 mo). We identified a genomic score that significantly correlated with outcomes of care including a clinical disease severity score and, more importantly, length of hospitalization and duration of supplemental O2. Conclusions Blood RNA profiles of infants with RSV LRTI allow specific diagnosis, better understanding of disease pathogenesis, and assessment of disease severity. This study opens new avenues for biomarker discovery and identification of potential therapeutic or preventive targets, and demonstrates that large microarray datasets can be translated into a biologically meaningful context and applied to the clinical setting. Please see later in the article for the Editors' Summary

261 citations

Journal ArticleDOI
TL;DR: A number of second order maps are presented, which pass the singularity confinement test commonly used to identify integrable discrete systems, but which nevertheless are non-integrable, and a more sensitive integrability test is proposed using the growth of the degree of its iterates.
Abstract: We present a number of second order maps, which pass the singularity confinement test commonly used to identify integrable discrete systems, but which nevertheless are non-integrable. As a more sensitive integrability test, we propose the analysis of the complexity (``algebraic entropy'') of the map using the growth of the degree of its iterates: integrability is associated with polynomial growth while the generic growth is exponential for chaotic systems.

261 citations

Journal ArticleDOI
TL;DR: Optimized methods for separation of higher plant thylakoid membrane protein complexes by native-PAGE addressing particularly the use of detergent, use of solubilization buffer, and the gel electrophoresis method are described.
Abstract: Gel-based analysis of thylakoid membrane protein complexes represents a valuable tool to monitor the dynamics of the photosynthetic machinery Native-PAGE preserves the components and often also the conformation of the protein complexes, thus enabling the analysis of their subunit composition Nevertheless, the literature and practical experimentation in the field sometimes raise confusion owing to a great variety of native-PAGE and thylakoid-solubilization systems In the present paper, we describe optimized methods for separation of higher plant thylakoid membrane protein complexes by native-PAGE addressing particularly: (i) the use of detergent; (ii) the use of solubilization buffer; and (iii) the gel electrophoresis method Special attention is paid to separation of high-molecular-mass thylakoid membrane super- and mega-complexes from Arabidopsis thaliana leaves Several novel super- and mega-complexes including PS (photosystem) I, PSII and LHCs (light-harvesting complexes) in various combinations are reported

260 citations


Authors

Showing all 16461 results

NameH-indexPapersCitations
Kari Alitalo174817114231
Mika Kivimäki1661515141468
Jaakko Kaprio1631532126320
Veikko Salomaa162843135046
Markus W. Büchler148154593574
Eugene C. Butcher14644672849
Steven Williams144137586712
Terho Lehtimäki1421304106981
Olli T. Raitakari1421232103487
Pim Cuijpers13698269370
Jeroen J. Bax132130674992
Sten Orrenius13044757445
Aarno Palotie12971189975
Stefan W. Hell12757765937
Carlos López-Otín12649483933
Network Information
Related Institutions (5)
University of Helsinki
113.1K papers, 4.6M citations

97% related

Lund University
124.6K papers, 5M citations

96% related

University of Copenhagen
149.7K papers, 5.9M citations

96% related

University of Amsterdam
140.8K papers, 5.9M citations

94% related

University of Manchester
168K papers, 6.4M citations

92% related

Performance
Metrics
No. of papers from the Institution in previous years
YearPapers
2023102
2022290
20212,673
20202,688
20192,407
20182,189