scispace - formally typeset
Search or ask a question

Showing papers by "University of Twente published in 2014"


Journal ArticleDOI
TL;DR: It is proposed that local spatial association is a way to identify the species occurrence records that require treatment for positional uncertainty and developed and presented a tool in the R environment to target observations that are likely to create error in the output from SDMs as a result of positional uncertainty.
Abstract: Species data held in museum and herbaria, survey data and opportunistically observed data are a substantial information resource. A key challenge in using these data is the uncertainty about where an observation is located. This is important when the data are used for species distribution modelling (SDM), because the coordinates are used to extract the environmental variables and thus, positional error may lead to inaccurate estimation of the species–environment relationship. The magnitude of this effect is related to the level of spatial autocorrelation in the environmental variables. Using local spatial association can be relevant because it can lead to the identification of the specific occurrence records that cause the largest drop in SDM accuracy. Therefore, in this study, we tested whether the SDM predictions are more affected by positional uncertainty originating from locations that have lower local spatial association in their predictors. We performed this experiment for Spain and the Netherlands, using simulated datasets derived from well known species distribution models (SDMs). We used the K statistic to quantify the local spatial association in the predictors at each species occurrence location. A probabilistic approach using Monte Carlo simulations was employed to introduce the error in the species locations. The results revealed that positional uncertainty in species occurrence data at locations with low local spatial association in predictors reduced the prediction accuracy of the SDMs. We propose that local spatial association is a way to identify the species occurrence records that require treatment for positional uncertainty. We also developed and present a tool in the R environment to target observations that are likely to create error in the output from SDMs as a result of positional uncertainty.

888 citations


Journal ArticleDOI
TL;DR: This work combines the best aspects of both spin qubit schemes and demonstrate a gate-addressable quantum dot qubit in isotopically engineered silicon with a control fidelity of 99.6%, consistent with that required for fault-tolerant quantum computing.
Abstract: A quantum bit that can be addressed with a gate voltage and has a very high control-fidelity can be realized in an electrically defined silicon quantum dot.

885 citations


Journal ArticleDOI
TL;DR: It is found that people with low levels of education and disabled people are using the Internet for more hours a day in their spare time than higher educated and employed populations and what they are doing online is investigated.
Abstract: In a representative survey of the Dutch population we found that people with low levels of education and disabled people are using the Internet for more hours a day in their spare time than higher educated and employed populations. To explain this finding, we investigated what these people are doing online. The first contribution is a theoretically validated cluster of Internet usage types: information, news, personal development, social interaction, leisure, commercial transaction and gaming. The second contribution is that, based on this classification, we were able to identify a number of usage differences, including those demonstrated by people with different gender, age, education and Internet experience, that are often observed in digital divide literature. The general conclusion is that when the Internet matures, it will increasingly reflect known social, economic and cultural relationships of the offline world, including inequalities.

824 citations


Journal ArticleDOI
06 Jun 2014-Science
TL;DR: This work reviews current footprints and relates those to maximum sustainable levels, highlighting the need for future work on combining footprints, assessing trade-offs between them, improving computational techniques, estimating maximum sustainable footprint levels, and benchmarking efficiency of resource use.
Abstract: Within the context of Earth’s limited natural resources and assimilation capacity, the current environmental footprint of humankind is not sustainable. Assessing land, water, energy, material, and other footprints along supply chains is paramount in understanding the sustainability, efficiency, and equity of resource use from the perspective of producers, consumers, and government. We review current footprints and relate those to maximum sustainable levels, highlighting the need for future work on combining footprints, assessing trade-offs between them, improving computational techniques, estimating maximum sustainable footprint levels, and benchmarking efficiency of resource use. Ultimately, major transformative changes in the global economy are necessary to reduce humanity’s environmental footprint to sustainable levels

738 citations


Journal ArticleDOI
TL;DR: The basis of photosynthetic acclimation and its optical signals is presented, the physical and physiological basis of ChlF is introduced from the molecular to the leaf level and beyond, and PAM and SIF methodology are introduced.
Abstract: subcellular levels. ChlF is now measurable from remote sensing platforms. This provides a new optical means to track photosynthesis and gross primary productivity of terrestrial ecosystems. Importantly, the spatiotemporal and methodological context of the new applications is dramatically different compared with most of the available ChlF literature, which raises a number of important considerations. Although we have a good mechanistic understanding of the processes that control the ChlF signal over the short term, the seasonal link between ChlF and photosynthesis remains obscure. Additionally, while the current understanding of in vivo ChlF is based on pulse amplitude-modulated (PAM) measurements, remote sensing applications are based on the measurement of the passive solar-induced chlorophyll fluorescence (SIF), which entails important differences and new challenges that remain to be solved. In this review we introduce and revisit the physical, physiological, and methodological factors that control the leaf-level ChlF signal in the context of the new remote sensing applications. Specifically, we present the basis of photosynthetic acclimation and its optical signals, we introduce the physical and physiological basis of ChlF from the molecular to the leaf level and beyond, and we introduce and compare PAM and SIF methodology. Finally, we evaluate and identify the challenges that still remain to be answered in order to consolidate our mechanistic understanding of the remotely sensed SIF signal.

714 citations


Book ChapterDOI
14 Jan 2014
TL;DR: In this paper, the authors define educational design research as a genre of research in which the iterative development of solutions to practical and complex educational problems provides the setting for scientific inquiry.
Abstract: Educational design research is a genre of research in which the iterative development of solutions to practical and complex educational problems provides the setting for scientific inquiry. The solutions can be educational products, processes, programs, or policies. Educational design research not only targets solving significant problems facing educational practitioners but at the same time seeks to discover new knowledge that can inform the work of others facing similar problems. Working systematically and simultaneously toward these dual goals is perhaps the most defining feature of educational design research. This chapter seeks to clarify the nature of educational design research by distinguishing it from other types of inquiry conducted in the field of educational communications and technology. Examples of design research conducted by different researchers working in the field of educational communications and technology are described. The chapter concludes with a discussion of several important issues facing educational design researchers as they pursue future work using this innovative research approach.

692 citations


Journal ArticleDOI
TL;DR: A historical overview of the developments in hydrogel research from simple networks to smart materials is provided to overcome several challenges to overcome for clinical translation.

688 citations



Journal ArticleDOI
TL;DR: In this article, the authors investigated the effects of adaptive cruise control (ACC) and highly automated driving (HAD) on drivers' workload and situation awareness through a meta-analysis and narrative review of simulator and on-road studies.
Abstract: Adaptive cruise control (ACC), a driver assistance system that controls longitudinal motion, has been introduced in consumer cars in 1995. A next milestone is highly automated driving (HAD), a system that automates both longitudinal and lateral motion. We investigated the effects of ACC and HAD on drivers' workload and situation awareness through a meta-analysis and narrative review of simulator and on-road studies. Based on a total of 32 studies, the unweighted mean self-reported workload was 43.5% for manual driving, 38.6% for ACC driving, and 22.7% for HAD (0% = minimum, 100 = maximum on the NASA Task Load Index or Rating Scale Mental Effort). Based on 12 studies, the number of tasks completed on an in-vehicle display relative to manual driving (100%) was 112% for ACC and 261% for HAD. Drivers of a highly automated car, and to a lesser extent ACC drivers, are likely to pick up tasks that are unrelated to driving. Both ACC and HAD can result in improved situation awareness compared to manual driving if drivers are motivated or instructed to detect objects in the environment. However, if drivers are engaged in non-driving tasks, situation awareness deteriorates for ACC and HAD compared to manual driving. The results of this review are consistent with the hypothesis that, from a Human Factors perspective, HAD is markedly different from ACC driving, because the driver of a highly automated car has the possibility, for better or worse, to divert attention to secondary tasks, whereas an ACC driver still has to attend to the roadway.

544 citations


Journal ArticleDOI
TL;DR: In this paper, the results of the evaluation for building detection, tree detection, and 3D building reconstruction are compared and analyzed to identify promising strategies for automatic urban object extraction from current airborne sensor data, but also common problems of state-of-the-art methods.
Abstract: For more than two decades, many efforts have been made to develop methods for extracting urban objects from data acquired by airborne sensors. In order to make the results of such algorithms more comparable, benchmarking data sets are of paramount importance. Such a data set, consisting of airborne image and laserscanner data, has been made available to the scientific community by ISPRS WGIII/4. Researchers were encouraged to submit their results of urban object detection and 3D building reconstruction, which were evaluated based on reference data. This paper presents the outcomes of the evaluation for building detection, tree detection, and 3D building reconstruction. The results achieved by different methods are compared and analysed to identify promising strategies for automatic urban object extraction from current airborne sensor data, but also common problems of state-of-the-art methods.

339 citations


Journal ArticleDOI
TL;DR: It is showed that reducing humanity's water footprint to sustainable levels is possible even with increasing populations, provided that consumption patterns change, and can help to guide corrective policies at both national and international levels.

Journal ArticleDOI
TL;DR: This analysis serves as a preliminary step towards an interactive, dynamic and online distributed database system (NA2RE system) of the current spatial distribution of European amphibians and reptiles and highlights the need to add temporal and altitudinal data for all records to allow tracking potential species distribution changes.
Abstract: A precise knowledge of the spatial distribution of taxa is essential for decision-making processes in land management and biodiversity conservation, both for present and under future global change scenarios. This is a key base for several scientific disciplines (e.g. macro-ecology, biogeography, evolutionary biology, spatial planning, or environmental impact assessment) that rely on species distribution maps. An atlas summarizing the distribution of European amphibians and reptiles with 50 × 50 km resolution maps based on ca. 85 000 grid records was published by the Societas Europaea Herpetologica (SEH) in 1997. Since then, more detailed species distribution maps covering large parts of Europe became available, while taxonomic progress has led to a plethora of taxonomic changes including new species descriptions. To account for these progresses, we compiled information from different data sources: published in books and websites, ongoing national atlases, personal data kindly provided to the SEH, the 1997 European Atlas, and the Global Biodiversity Information Facility (GBIF). Databases were homogenised, deleting all information except species names and coordinates, projected to the same coordinate system (WGS84) and transformed into a 50 × 50 km grid. The newly compiled database comprises more than 384 000 grid and locality records distributed across 40 countries. We calculated species richness maps as well as maps of Corrected Weighted Endemism and defined species distribution types (i.e. groups of species with similar distribution patterns) by hierarchical cluster analysis using Jaccard’s index as association measure. Our analysis serves as a preliminary step towards an interactive, dynamic and online distributed database system (NA2RE system) of the current spatial distribution of European amphibians and reptiles. The NA2RE system will serve as well to monitor potential temporal changes in their distributions. Grid maps of all species are made available along with this paper as a tool for decision-making and conservation-related studies and actions. We also identify taxonomic and geographic gaps of knowledge that need to be filled, and we highlight the need to add temporal and altitudinal data for all records, to allow tracking potential species distribution changes as well as detailed modelling of the impacts of land use and climate change on European amphibians and reptiles.

Journal ArticleDOI
TL;DR: The notion of provably secure searchable encryption (SE) is surveyed by giving a complete and comprehensive overview of the two main SE techniques: searchable symmetric encryption (SSE) and public key encryption with keyword search (PEKS).
Abstract: We survey the notion of provably secure searchable encryption (SE) by giving a complete and comprehensive overview of the two main SE techniques: searchable symmetric encryption (SSE) and public key encryption with keyword search (PEKS). Since the pioneering work of Song, Wagner, and Perrig (IEEE S&P '00), the field of provably secure SE has expanded to the point where we felt that taking stock would provide benefit to the community.The survey has been written primarily for the nonspecialist who has a basic information security background. Thus, we sacrifice full details and proofs of individual constructions in favor of an overview of the underlying key techniques. We categorize and compare the different SE schemes in terms of their security, efficiency, and functionality. For the experienced researcher, we point out connections between the many approaches to SE and identify open research problems.Two major conclusions can be drawn from our work. While the so-called IND-CKA2 security notion becomes prevalent in the literature and efficient (sublinear) SE schemes meeting this notion exist in the symmetric setting, achieving this strong form of security efficiently in the asymmetric setting remains an open problem. We observe that in multirecipient SE schemes, regardless of their efficiency drawbacks, there is a noticeable lack of query expressiveness that hinders deployment in practice.

Journal ArticleDOI
TL;DR: In this article, the authors performed a detailed analysis of 200 large and medium-sized cities across 11 European countries and analyzed the cities' climate change adaptation and mitigation plans, finding that 35% of European cities studied have no dedicated mitigation plan and 72% have no adaptation plan.
Abstract: Urban areas are pivotal to global adaptation and mitigation efforts. But how do cities actually perform in terms of climate change response? This study sheds light on the state of urban climate change adaptation and mitigation planning across Europe. Europe is an excellent test case given its advanced environmental policies and high urbanization. We performed a detailed analysis of 200 large and medium-sized cities across 11 European countries and analysed the cities’ climate change adaptation and mitigation plans. We investigate the regional distribution of plans, adaptation and mitigation foci and the extent to which planned greenhouse gas (GHG) reductions contribute to national and international climate objectives. To our knowledge, it is the first study of its kind as it does not rely on self-assessment (questionnaires or social surveys). Our results show that 35 % of European cities studied have no dedicated mitigation plan and 72 % have no adaptation plan. No city has an adaptation plan without a mitigation plan. One quarter of the cities have both an adaptation and a mitigation plan and set quantitative GHG reduction targets, but those vary extensively in scope and ambition. Furthermore, we show that if the planned actions within cities are nationally representative the 11 countries investigated would achieve a 37 % reduction in GHG emissions by 2050, translating into a 27 % reduction in GHG emissions for the EU as a whole. However, the actions would often be insufficient to reach national targets and fall short of the 80 % reduction in GHG emissions recommended to avoid global mean temperature rising by 2 °C above pre-industrial levels.

Journal ArticleDOI
TL;DR: A framework for categorisation of HRI modalities and features that will allow comparing their therapeutic benefits is proposed, and it is recommended that the HRI is better described and documented so that work of various teams can be considered in the same group and categories.
Abstract: Robot-mediated post-stroke therapy for the upper-extremity dates back to the 1990s. Since then, a number of robotic devices have become commercially available. There is clear evidence that robotic interventions improve upper limb motor scores and strength, but these improvements are often not transferred to performance of activities of daily living. We wish to better understand why. Our systematic review of 74 papers focuses on the targeted stage of recovery, the part of the limb trained, the different modalities used, and the effectiveness of each. The review shows that most of the studies so far focus on training of the proximal arm for chronic stroke patients. About the training modalities, studies typically refer to active, active-assisted and passive interaction. Robot-therapy in active assisted mode was associated with consistent improvements in arm function. More specifically, the use of HRI features stressing active contribution by the patient, such as EMG-modulated forces or a pushing force in combination with spring-damper guidance, may be beneficial. Our work also highlights that current literature frequently lacks information regarding the mechanism about the physical human-robot interaction (HRI). It is often unclear how the different modalities are implemented by different research groups (using different robots and platforms). In order to have a better and more reliable evidence of usefulness for these technologies, it is recommended that the HRI is better described and documented so that work of various teams can be considered in the same group and categories, allowing to infer for more suitable approaches. We propose a framework for categorisation of HRI modalities and features that will allow comparing their therapeutic benefits.

Journal ArticleDOI
TL;DR: In this paper, a set of global water footprint (WF) benchmark values for a large number of crops grown in the world were established and a spatial distribution of the green-blue and grey WFs of different crops was calculated at a spatial resolution of 5 by 5′ with a dynamic water balance and crop yield model.

Journal ArticleDOI
TL;DR: The coupled model enabled us to quantify the relationships between steady state chlorophyll fluorescence yield, electron transport rate, and photosynthesis in leaves under different environmental conditions.
Abstract: We have extended a conventional photosynthesis model to simulate field and laboratory measurements of chlorophyll fluorescence at the leaf scale. The fluorescence paramaterization is based on a close nonlinear relationship between the relative light saturation of photosynthesis and nonradiative energy dissipation in plants of different species. This relationship diverged only among examined data sets under stressed (strongly light saturated) conditions, possibly caused by differences in xanthophyll pigment concentrations. The relationship was quantified after analyzing data sets of pulse amplitude modulated measurements of chlorophyll fluorescence and gas exchange of leaves of different species exposed to different levels of light, CO2, temperature, nitrogen fertilization treatments, and drought. We used this relationship in a photosynthesis model. The coupled model enabled us to quantify the relationships between steady state chlorophyll fluorescence yield, electron transport rate, and photosynthesis in leaves under different environmental conditions.

Journal ArticleDOI
TL;DR: Heterogeneity in the effects of subjective aging was revealed, with stronger effects for studies with a shorter period of follow-up, for studies of health versus survival, and for studies in welfare systems where state provisions of welfare are minimal.
Abstract: Evidence is accumulating on the effects of subjective aging—that is, how individuals perceive their own aging process—on health and survival in later life. The goal of this article is to synthesize findings of existing longitudinal studies through a meta-analysis. A systematic search in PsycInfo, Web of Science, Scopus, and Pubmed resulted in 19 longitudinal studies reporting effects of subjective aging on health, health behaviors, and longevity. The authors combine the outcomes reported in these studies using a random effects meta-analysis, assuming that there would be differences in effect sizes across studies. The meta-analysis resulted in an overall significant effect of subjective aging (likelihood ratio = 1.429; 95% confidence interval = 1.273–1.604; p < .001). The analyses revealed heterogeneity, with stronger effects for studies with a shorter period of follow-up, for studies of health versus survival, for studies with younger participants (average age of the studies varies between 57 and 85 years with a median of 63 years), and for studies in welfare systems where state provisions of welfare are minimal. However, effects did not vary either across different operationalizations of subjective aging or by study quality. Subjective aging has a small significant effect on health, health behaviors, and survival. Further theoretical conceptualizations and empirical studies are needed to determine how subjective aging contributes to health and survival.

Journal ArticleDOI
TL;DR: It was found that vascular targeting did work, resulting in rapid and efficient early binding to tumor blood vessels, but that over time, passive targeting was significantly more efficient, leading to higher overall levels and to more efficient retention within tumors.
Abstract: Enhanced permeability and retention (EPR) and the (over-) expression of angiogenesis-related surface receptors are key features of tumor blood vessels. As a consequence, EPR-mediated passive and Arg-Gly-Asp (RGD) and Asn-Gly-Arg (NGR) based active tumor targeting have received considerable attention in the last couple of years. Using several different in vivo and ex vivo optical imaging techniques, we here visualized and quantified the benefit of RGD- and NGR-based vascular vs EPR-mediated passive tumor targeting. This was done using ∼10 nm sized polymeric nanocarriers, which were either labeled with DY-676 (peptide-modified polymers) or with DY-750 (peptide-free polymers). Upon coinjection into mice bearing both highly leaky CT26 and poorly leaky BxPC3 tumors, it was found that vascular targeting did work, resulting in rapid and efficient early binding to tumor blood vessels, but that over time, passive targeting was significantly more efficient, leading to higher overall levels and to more efficient ret...

Journal ArticleDOI
TL;DR: In this paper, the authors present a systematic review of measurement methods for both SAR and ILP, leading to recommendations for a standardised, simple and reliable method for measurements using non-adiabatic systems.
Abstract: In the clinical application of magnetic hyperthermia, the heat generated by magnetic nanoparticles in an alternating magnetic �耀eld is used as a cancer treatment. The heating ability of the particles is quanti�耀ed by the speci�耀c absorption rate (SAR), an extrinsic parameter based on the clinical response characteristic of power delivered per unit mass, and by the intrinsic loss parameter (ILP), an intrinsic parameter based on the heating capacity of the material. Even though both the SAR and ILP are widely used as comparative design parameters, they are almost always measured in non-adiabatic systems that make accurate measurements dif�耀cult. We present here the results of a systematic review of measurement methods for both SAR and ILP, leading to recommendations for a standardised, simple and reliable method for measurements using non-adiabatic systems. In a representative survey of 50 retrieved datasets taken from published papers, the derived SAR or ILP was found to be more than 5% overestimated in 24% of cases and more than 5% underestimated in 52% of cases.

Journal ArticleDOI
TL;DR: Results show that constructing a control system to restrict fuel cell's and batteries' current slope and maintaining dc bus voltage in accordance with the reference values using MPC was feasible and effectively done.
Abstract: Well known as an efficient and eco-friendly power source, fuel cell, unfortunately, offers slow dynamics. When attached as primary energy source in a vehicle, fuel cell would not be able to respond to abrupt load variations. Supplementing battery and/or supercapacitor to the system will provide a solution to this shortcoming. On the other hand, a current regulation that is vital for lengthening time span of the energy storage system is needed. This can be accomplished by keeping fuel cell's and batteries' current slope in reference to certain values, as well as attaining a stable dc output voltage. For that purpose, a feedback control system for regulating the hybrid of fuel cell, batteries, and supercapacitor was constructed for this study. Output voltage of the studied hybrid power sources (HPS) was administered by assembling three dc-dc converters comprising two bidirectional converters and one boost converter. Current/voltage output of fuel cell was regulated by boost converter, whereas the bidirectional converters regulated battery and supercapacitor. Reference current for each converter was produced using Model Predictive Control (MPC) and subsequently tracked using hysteresis control. These functions were done on a controller board of a dSPACE DS1104. Subsequently, on a test bench made up from 6 V, 4.5 Ah battery and 7.5 V, 120 F supercapacitor together with a fuel cell of 50 W, 10 A, experiment was conducted. Results show that constructing a control system to restrict fuel cell's and batteries' current slope and maintaining dc bus voltage in accordance with the reference values using MPC was feasible and effectively done.

Journal ArticleDOI
TL;DR: Two design ideas are proposed, which provide attractive analog/RF-isolation and allow integration in compact radios and combines a dual-port polarized antenna with a self-tunable cancellation circuit.
Abstract: In-band full-duplex sets challenging requirements for wireless communication radios, in particular their capability to prevent receiver sensitivity degradation due to self-interference (transmit signals leaking into its own receiver). Previously published self-interference rejection designs require bulky components and/or antenna structures. This paper addresses this form-factor issue. First, compact radio transceiver feasibility bottlenecks are identified analytically, and tradeoff equations in function of link budget parameters are presented. These derivations indicate that the main bottlenecks can be resolved by increasing the isolation in analog/RF. Therefore, two design ideas are proposed, which provide attractive analog/RF-isolation and allow integration in compact radios. The first design proposal targets compact radio devices, such as small-cell base stations and tablet computers, and combines a dual-port polarized antenna with a self-tunable cancellation circuit. The second design proposal targets even more compact radio devices such as smartphones and sensor network nodes. This design builds on a tunable electrical balance isolator/duplexer in combination with a single-port miniature antenna. The electrical balance circuit can be implemented for scaled CMOS technology, facilitating low cost and dense integration.

Journal ArticleDOI
TL;DR: Three types of biofunctionalizing surface treatments are applied and compared to have considerable effects on apatite forming ability, cell attachment, cell proliferation, and bone ingrowth of the studied biomaterials.

Journal ArticleDOI
TL;DR: Go-Lab enables inquiry-based learning that promotes acquisition of deep conceptual domain knowledge and inquiry skills, with the further intent of interesting students in careers in science.
Abstract: The Go-Lab federation of online labs opens up virtual laboratories (simulation), remote laboratories (real equipment accessible at distance) and data sets from physical laboratory experiments (together called “online labs”) for large-scale use in education. In this way, Go-Lab enables inquiry-based learning that promotes acquisition of deep conceptual domain knowledge and inquiry skills, with the further intent of interesting students in careers in science. For students, Go-Lab offers the opportunity to perform scientific experiments with online labs in pedagogically structured learning spaces. Go-Lab’s inquiry learning spaces (ILSs) structure the students’ inquiry process through an inquiry cycle and provide students with guidance in which dedicated (and connected) scaffolds for inquiry processes play a pivotal role. Teachers can create and adapt inquiry learning phases and the associated guidance in an ILS through a simple wiki-like interface and can add scaffolds and tools to an ILS using a straightforward drag and drop feature. Teachers can also adapt scaffolds and tools (e.g., change the language or the concepts available in a concept mapper) through an “app composer”. In creating ILSs, teachers are supported by scenarios and associated defaults ILSs that can be used as a starting point for development. In addition, teachers are offered a community framework to disseminate best practices and find mutual support. For lab-owners, Go-Lab provides open interfacing solutions for easily plugging in their online labs and sharing them in the Go-Lab federation of online labs. In its first year, Go-Lab created ILSs for thirteen online labs from different lab providers, including renowned research organizations (e.g., CERN, ESA) that participate in the consortium. The design of these inquiry learning spaces has been evaluated through mock-ups and prototypes with students and teachers. More advanced and later versions will be evaluated and validated in large scale pilots. The sustainability of Go-Lab will come from the opportunity for the larger science education community to add new online labs and share ILSs. An open and Web-based community will capitalize on the “collective intelligence” of students, teachers, and scientists.

Journal ArticleDOI
22 May 2014
TL;DR: It is shown that there is a growing body of literature that evidences the capabilities, but also the limitations and challenges of affect detection from neurophysiological activity, and possible applications of aBCI in a general taxonomy of brain-computer interface approaches.
Abstract: Affective states, moods and emotions, are an integral part of human nature: they shape our thoughts, govern the behavior of the individual, and influence our interpersonal relationships. The last decades have seen a growing interest in the automatic detection of such states from voice, facial expression, and physiological signals, primarily with the goal of enhancing human-computer interaction with an affective component. With the advent of brain-computer interface research, the idea of affective brain-computer interfaces (aBCI), enabling affect detection from brain signals, arose. In this article, we set out to survey the field of neurophysiology-based affect detection. We outline possible applications of aBCI in a general taxonomy of brain-computer interface approaches and introduce the core concepts of affect and their neurophysiological fundamentals. We show that there is a growing body of literature that evidences the capabilities, but also the limitations and challenges of affect detection from neurophysiological activity.

Journal ArticleDOI
TL;DR: The concept of Awareness of Aging (AoA) is proposed as a superordinate construct that can serve an integrative function in developmental research on subjective aging by acknowledging that judgments of subjective aging tend to be made on an awareness continuum ranging from pre-conscious/implicit to conscious/explicit.

Journal ArticleDOI
TL;DR: In this article, a flexible nitinol needle with 12 fiber bragg grating (FBG) sensors was used to estimate axial strain and reconstruct the 3D needle shape from the curvature.
Abstract: We present a prototype of a flexible nitinol needle (φ 1.0 mm and length 172 mm) integrated with an array of 12 Fiber Bragg Grating (FBG) sensors. These sensors measure the axial strain, which enables the computation of the needle curvature. We reconstruct the three-dimensional (3-D) needle shape from the curvature. Experiments are performed where the needle is deflected in free space. The maximum errors between the experiments and beam theory-based model are 0.20 mm (in-plane deflection with single bend), 0.51 mm (in-plane deflection with double bend), and 1.66 mm (out-of-plane). We also describe kinematics-based and mechanics-based models for predicting the 3-D needle shape during insertion into soft tissue. We perform experiments where the needle is inserted into a soft-tissue simulant, and the 3-D needle shape is reconstructed using the FBG sensors. We compare the reconstructed needle shape to deflection obtained from camera images and our models. The maximum error between the experiments and the camera images is 0.74 mm. The maximum errors between the kinematics-based and mechanics-based models and the camera images are 3.77 mm and 2.20 mm, respectively. This study demonstrates that deflection models and needles integrated with FBG sensors have the potential to be used in combination with clinical imaging modalities in order to enable accurate needle steering.

Journal ArticleDOI
TL;DR: In this paper, the authors explore the value-appropriation and value-creation implications of R&D collaboration resulting in the co-ownership of intellectual property (i.e. co-patents).

Journal ArticleDOI
TL;DR: In this article, the effect of varying feed water concentrations on a reverse electrodialysis (RED) system in terms of permselectivity of the membrane, energy efficiency, power density and electrical resistance was examined.

Journal ArticleDOI
TL;DR: This work presents and evaluates a compact and ergonomically designed handheld probe, connected to a portable ultrasound system for inexpensive, real-time dual-modality ultrasound/photoacoustic imaging.
Abstract: Ultrasound and photoacoustics can be utilized as complementary imaging techniques to improve clinical diagnoses. Photoacoustics provides optical contrast and functional information while ultrasound provides structural and anatomical information. As of yet, photoacoustic imaging uses large and expensive systems, which limits their clinical application and makes the combination costly and impracticable. In this work we present and evaluate a compact and ergonomically designed handheld probe, connected to a portable ultrasound system for inexpensive, real-time dual-modality ultrasound/photoacoustic imaging. The probe integrates an ultrasound transducer array and a highly efficient diode stack laser emitting 130 ns pulses at 805 nm wavelength and a pulse energy of 0.56 mJ, with a high pulse repetition frequency of up to 10 kHz. The diodes are driven by a customized laser driver, which can be triggered externally with a high temporal stability necessary to synchronize the ultrasound detection and laser pulsing. The emitted beam is collimated with cylindrical micro-lenses and shaped using a diffractive optical element, delivering a homogenized rectangular light intensity distribution. The system performance was tested in vitro and in vivo by imaging a human finger joint.