scispace - formally typeset
Search or ask a question
Institution

University of Utah

EducationSalt Lake City, Utah, United States
About: University of Utah is a education organization based out in Salt Lake City, Utah, United States. It is known for research contribution in the topics: Population & Poison control. The organization has 52894 authors who have published 124076 publications receiving 5265834 citations. The organization is also known as: The U & The University of Utah.


Papers
More filters
Journal ArticleDOI
Ron Do1, Cristen J. Willer2, Ellen M. Schmidt2, Sebanti Sengupta2  +263 moreInstitutions (83)
TL;DR: It is suggested that triglyceride-rich lipoproteins causally influence risk for CAD, and the strength of a polymorphism's effect on triglyceride levels is correlated with the magnitude of its effect on CAD risk.
Abstract: Triglycerides are transported in plasma by specific triglyceride-rich lipoproteins; in epidemiological studies, increased triglyceride levels correlate with higher risk for coronary artery disease (CAD). However, it is unclear whether this association reflects causal processes. We used 185 common variants recently mapped for plasma lipids (P < 5 × 10(-8) for each) to examine the role of triglycerides in risk for CAD. First, we highlight loci associated with both low-density lipoprotein cholesterol (LDL-C) and triglyceride levels, and we show that the direction and magnitude of the associations with both traits are factors in determining CAD risk. Second, we consider loci with only a strong association with triglycerides and show that these loci are also associated with CAD. Finally, in a model accounting for effects on LDL-C and/or high-density lipoprotein cholesterol (HDL-C) levels, the strength of a polymorphism's effect on triglyceride levels is correlated with the magnitude of its effect on CAD risk. These results suggest that triglyceride-rich lipoproteins causally influence risk for CAD.

817 citations

Journal ArticleDOI
TL;DR: mW mimics the hydrogen-bonded structure of water through the introduction of a nonbond angular dependent term that encourages tetrahedral configurations, and concludes that it is not the nature of the interactions but the connectivity of the molecules that determines the structural and thermodynamic behavior of water.
Abstract: Water and silicon are chemically dissimilar substances with common physical properties. Their liquids display a temperature of maximum density, increased diffusivity on compression, and they form tetrahedral crystals and tetrahedral amorphous phases. The common feature to water, silicon, and carbon is the formation of tetrahedrally coordinated units. We exploit these similarities to develop a coarse-grained model of water (mW) that is essentially an atom with tetrahedrality intermediate between carbon and silicon. mW mimics the hydrogen-bonded structure of water through the introduction of a nonbond angular dependent term that encourages tetrahedral configurations. The model departs from the prevailing paradigm in water modeling: the use of long-ranged forces (electrostatics) to produce short-ranged (hydrogen-bonded) structure. mW has only short-range interactions yet it reproduces the energetics, density and structure of liquid water, and its anomalies and phase transitions with comparable or better accu...

816 citations

Journal ArticleDOI
TL;DR: The molecular classification proposed herein outperforms the current histopathological classification and thus might serve as a basis for the next World Health Organization classification of CNS tumors.

816 citations

Journal ArticleDOI
TL;DR: Evolutionary bet-hedging involves a trade-off between the mean and variance of fitness, such that phenotypes with reduced mean fitness may be at a selective advantage under certain conditions.
Abstract: Evolutionary bet-hedging involves a trade-off between the mean and variance of fitness, such that phenotypes with reduced mean fitness may be at a selective advantage under certain conditions. The theory of bet-hedging was first formulated in the 1970s, and recent empirical studies suggest that the process may operate in a wide range of plant and animal species.

814 citations

Journal ArticleDOI
TL;DR: The subtle adjustments needed to ensure developmental plasticity in IUGR are provided by epigenetic modulation of critical genes, accompanied by changes in the quantity and activity of enzymes responsible for making modifications to chromatin as well as global and gene-specific modifications of chromatin.
Abstract: Purpose of review—Intrauterine growth restriction (IUGR) is associated with an increased propensity to develop adult onset disease and is described by the developmental origins of adult disease hypothesis. Sequelae of fetal growth restriction include metabolic disease as well as nonmetabolic disorders. Although it has become clear that the morbidities associated with IUGR are complex and result from disruptions to multiple pathways and multiple organs, the mechanisms driving the long-term effects are only just beginning to be understood. Recent findings—IUGR affects most organ systems by either interrupting developmental processes such as apoptosis or producing lasting changes to levels of key regulatory factors. Both of these are associated with an often persistent change in gene expression. Epigenetic modulation of transcription is a mechanism that is at least partially responsible for this. IUGR is accompanied by changes in the quantity and activity of enzymes responsible for making modifications to chromatin as well as global and gene-specific modifications of chromatin. Summary—The subtle adjustments needed to ensure developmental plasticity in IUGR are provided by epigenetic modulation of critical genes. Translating the messages of the epigenetic profile and identifying the players that mediate the effects remains one of the major challenges in the field. An understanding of the mechanisms driving the epigenetic changes will facilitate identification of dietary and pharmaceutical approaches that can be applied in the postnatal period.

813 citations


Authors

Showing all 53431 results

NameH-indexPapersCitations
Bert Vogelstein247757332094
George M. Whitesides2401739269833
Hongjie Dai197570182579
Robert M. Califf1961561167961
Frank E. Speizer193636135891
Yusuke Nakamura1792076160313
David L. Kaplan1771944146082
Marc G. Caron17367499802
George M. Church172900120514
Steven P. Gygi172704129173
Lily Yeh Jan16246773655
Tobin J. Marks1591621111604
David W. Bates1591239116698
Alfred L. Goldberg15647488296
Charles M. Perou156573202951
Network Information
Related Institutions (5)
University of Washington
305.5K papers, 17.7M citations

97% related

University of California, San Diego
204.5K papers, 12.3M citations

96% related

Stanford University
320.3K papers, 21.8M citations

96% related

Columbia University
224K papers, 12.8M citations

96% related

University of Michigan
342.3K papers, 17.6M citations

95% related

Performance
Metrics
No. of papers from the Institution in previous years
YearPapers
2023203
2022769
20217,363
20207,015
20196,309
20185,651