scispace - formally typeset
Search or ask a question
Institution

University of Utah

EducationSalt Lake City, Utah, United States
About: University of Utah is a education organization based out in Salt Lake City, Utah, United States. It is known for research contribution in the topics: Population & Medicine. The organization has 52894 authors who have published 124076 publications receiving 5265834 citations. The organization is also known as: The U & The University of Utah.


Papers
More filters
Journal ArticleDOI
TL;DR: It is demonstrated that the MGS functional, in combination with the penalization function, helps to generate clearer and more focused images for geological structures than conventional maximum smoothness or total variation functionals.
Abstract: A critical problem in inversion of geophysical data is developing a stable inverse problem solution that can simultaneously resolve complicated geological structures. The traditional way to obtain a stable solution is based on maximum smoothness criteria. This approach, however, provides smoothed unfocused images of real geoelectrical structures. Recently, a new approach to reconstruction of images has been developed based on a total variational stabilizing functional. However, in geophysical applications it still produces distorted images. In this paper we develop a new technique to solve this problem which we call focusing inversion images. It is based on specially selected stabilizing functionals, called minimum gradient support (MGS) functionals, which minimize the area where strong model parameter variations and discontinuity occur. We demonstrate that the MGS functional, in combination with the penalization function, helps to generate clearer and more focused images for geological structures than conventional maximum smoothness or total variation functionals. The method has been successfully tested on synthetic models and applied to real gravity data.

581 citations

Journal ArticleDOI
TL;DR: This tutorial provides timely insight into recent advances and practical information related to the ultrasonic assessment of vascular endothelial function in humans.
Abstract: Developed in 1992, the flow-mediated dilation test is now the most commonly used noninvasive assessment of vascular endothelial function in humans Since its inception, scientists have refined their understanding of the physiology, analysis, and interpretation of this measurement Recently, a significant growth of knowledge has added to our understanding and implementation of this clinically relevant research methodology Therefore, this tutorial provides timely insight into recent advances and practical information related to the ultrasonic assessment of vascular endothelial function in humans

581 citations

Journal ArticleDOI
TL;DR: Multiple levels of molecular interactions are suggested, each of which contribute specific functional features and together create a sophisticated signaling device in bacteria that mediate chemotaxis.

581 citations

Journal ArticleDOI
TL;DR: Findings provide strong evidence that endogenous microRNAs undergo a functional transfer between immune cells and constitute a mechanism of regulating the inflammatory response.
Abstract: MicroRNAs regulate gene expression posttranscriptionally and function within the cells in which they are transcribed. However, recent evidence suggests that microRNAs can be transferred between cells and mediate target gene repression. We find that endogenous miR-155 and miR-146a, two critical microRNAs that regulate inflammation, are released from dendritic cells within exosomes and are subsequently taken up by recipient dendritic cells. Following uptake, exogenous microRNAs mediate target gene repression and can reprogramme the cellular response to endotoxin, where exosome-delivered miR-155 enhances while miR-146a reduces inflammatory gene expression. We also find that miR-155 and miR-146a are present in exosomes and pass between immune cells in vivo, as well as demonstrate that exosomal miR-146a inhibits while miR-155 promotes endotoxin-induced inflammation in mice. Together, our findings provide strong evidence that endogenous microRNAs undergo a functional transfer between immune cells and constitute a mechanism of regulating the inflammatory response.

580 citations

Journal ArticleDOI
TL;DR: In this paper, the intrinsic spin Hall effect is exactly quantized in integer units of a topological charge, where the number of extended edge states crossing the Fermi level is dictated by (exactly equal to) the bulk topology charge.
Abstract: We propose models of two-dimensional paramagnetic semiconductors where the intrinsic spin Hall effect is exactly quantized in integer units of a topological charge. The model describes a topological insulator in the bulk and a ``holographic metal'' at the edge, where the number of extended edge states crossing the Fermi level is dictated by (exactly equal to) the bulk topological charge. We also demonstrate the spin Hall effect explicitly in terms of the spin accumulation caused by the adiabatic flux insertion.

580 citations


Authors

Showing all 53431 results

NameH-indexPapersCitations
Bert Vogelstein247757332094
George M. Whitesides2401739269833
Hongjie Dai197570182579
Robert M. Califf1961561167961
Frank E. Speizer193636135891
Yusuke Nakamura1792076160313
David L. Kaplan1771944146082
Marc G. Caron17367499802
George M. Church172900120514
Steven P. Gygi172704129173
Lily Yeh Jan16246773655
Tobin J. Marks1591621111604
David W. Bates1591239116698
Alfred L. Goldberg15647488296
Charles M. Perou156573202951
Network Information
Related Institutions (5)
University of Washington
305.5K papers, 17.7M citations

97% related

University of California, San Diego
204.5K papers, 12.3M citations

96% related

Stanford University
320.3K papers, 21.8M citations

96% related

Columbia University
224K papers, 12.8M citations

96% related

University of Michigan
342.3K papers, 17.6M citations

95% related

Performance
Metrics
No. of papers from the Institution in previous years
YearPapers
2023203
2022769
20217,364
20207,015
20196,309
20185,651