scispace - formally typeset
Search or ask a question
Institution

University of Valencia

EducationValencia, Spain
About: University of Valencia is a education organization based out in Valencia, Spain. It is known for research contribution in the topics: Population & Neutrino. The organization has 27096 authors who have published 65669 publications receiving 1765689 citations. The organization is also known as: Universitat de València & UV.


Papers
More filters
Journal ArticleDOI
TL;DR: This review compiles the principal articles on medicinal plants used for treating diabetes and its comorbidities, as well as mechanisms of natural products as antidiabetic agents, and considers compounds of high interest as potential antidiabetics.
Abstract: Type 2 diabetes mellitus is a metabolic disease characterized by persistent hyperglycemia. High blood sugar can produce long-term complications such as cardiovascular and renal disorders, retinopathy, and poor blood flow. Its development can be prevented or delayed in people with impaired glucose tolerance by implementing lifestyle changes or the use of therapeutic agents. Some of these drugs have been obtained from plants or have a microbial origin, such as galegine isolated from Galega officinalis, which has a great similarity to the antidiabetic drug metformin. Picnogenol, acarbose, miglitol, and voglibose are other antidiabetic products of natural origin. This review compiles the principal articles on medicinal plants used for treating diabetes and its comorbidities, as well as mechanisms of natural products as antidiabetic agents. Inhibition of α-glucosidase and α-amylase, effects on glucose uptake and glucose transporters, modification of mechanisms mediated by the peroxisome proliferator-activated receptor, inhibition of protein tyrosine phosphatase 1B activity, modification of gene expression, and activities of hormones involved in glucose homeostasis such as adiponectin, resistin, and incretin, and reduction of oxidative stress are some of the mechanisms in which natural products are involved. We also review the most relevant clinical trials performed with medicinal plants and natural products such as aloe, banaba, bitter melon, caper, cinnamon, cocoa, coffee, fenugreek, garlic, guava, gymnema, nettle, sage, soybean, green and black tea, turmeric, walnut, and yerba mate. Compounds of high interest as potential antidiabetics are: fukugetin, palmatine, berberine, honokiol, amorfrutins, trigonelline, gymnemic acids, gurmarin, and phlorizin.

323 citations

Journal ArticleDOI
TL;DR: In this article, Fourier transform infrared spectroscopy (FTIR) was used to classify vegetable oils according to their botanical origin, and also to establish the composition of binary mixtures of extra virgin olive oil (EVOO) with other low cost edible oils.

323 citations

Journal ArticleDOI
TL;DR: The second release of the Gypsy Database of Mobile Genetic Elements (GyDB 2.0) is introduced, an update based on the analysis of Ty3/Gypsy, Retroviridae, Ty1/Copia and Bel/Pao LTR retroelements and the Caulimoviridae pararetroviruses of plants.
Abstract: This article introduces the second release of the Gypsy Database of Mobile Genetic Elements (GyDB 2.0): a research project devoted to the evolutionary dynamics of viruses and transposable elements based on their phylogenetic classification (per lineage and protein domain). The Gypsy Database (GyDB) is a long-term project that is continuously progressing, and that owing to the high molecular diversity of mobile elements requires to be completed in several stages. GyDB 2.0 has been powered with a wiki to allow other researchers participate in the project. The current database stage and scope are long terminal repeats (LTR) retroelements and relatives. GyDB 2.0 is an update based on the analysis of Ty3/Gypsy, Retroviridae, Ty1/Copia and Bel/Pao LTR retroelements and the Caulimoviridae pararetroviruses of plants. Among other features, in terms of the aforementioned topics, this update adds: (i) a variety of descriptions and reviews distributed in multiple web pages; (ii) protein-based phylogenies, where phylogenetic levels are assigned to distinct classified elements; (iii) a collection of multiple alignments, lineage-specific hidden Markov models and consensus sequences, called GyDB collection; (iv) updated RefSeq databases and BLAST and HMM servers to facilitate sequence characterization of new LTR retroelement and caulimovirus queries; and (v) a bibliographic server. GyDB 2.0 is available at http://gydb.org.

323 citations

Journal ArticleDOI
TL;DR: The genetic organization of each family of mobilization regions is outlined, as well as the most relevant properties and relationships among their constituent encoded proteins, which constitutes a first approach to the characterization of the global gene pool of mobilize regions of small mobilizable plasmids.
Abstract: Transmissible plasmids can be classified according to their mobilization ability, as being conjugative (self-transmissible) or mobilizable (transmissible only in the presence of additional conjugative functions). Naturally occurring mobilizable plasmids carry the genetic information necessary for relaxosome formation and processing, but lack the functions required for mating pair formation. Mobilizable plasmids have a tremendous impact in horizontal gene transfer in nature, including the spread of antibiotic resistance. However, analysis of their promiscuity and diversity has attracted less attention than that of conjugative plasmids. This review will focus on the analysis of the diversity of mobilizable plasmids. For this purpose, we primarily compared the amino acid sequences of their relaxases and, when pertinent, we compared these enzymes with conjugative plasmid relaxases. In this way, we established phylogenetic relationships among the members of each superfamily. We conducted a database and literature analysis that led us to propose a classification system for small mobilizable plasmids in families and superfamilies according to their mobilization regions. This review outlines the genetic organization of each family of mobilization regions, as well as the most relevant properties and relationships among their constituent encoded proteins. In this respect, the present review constitutes a first approach to the characterization of the global gene pool of mobilization regions of small mobilizable plasmids.

323 citations

Journal ArticleDOI
TL;DR: An expanded GWAS of birth weight and subsequent analysis using structural equation modeling and Mendelian randomization decomposes maternal and fetal genetic contributions and causal links between birth weight, blood pressure and glycemic traits.
Abstract: Birth weight variation is influenced by fetal and maternal genetic and non-genetic factors, and has been reproducibly associated with future cardio-metabolic health outcomes. In expanded genome-wide association analyses of own birth weight (n = 321,223) and offspring birth weight (n = 230,069 mothers), we identified 190 independent association signals (129 of which are novel). We used structural equation modeling to decompose the contributions of direct fetal and indirect maternal genetic effects, then applied Mendelian randomization to illuminate causal pathways. For example, both indirect maternal and direct fetal genetic effects drive the observational relationship between lower birth weight and higher later blood pressure: maternal blood pressure-raising alleles reduce offspring birth weight, but only direct fetal effects of these alleles, once inherited, increase later offspring blood pressure. Using maternal birth weight-lowering genotypes to proxy for an adverse intrauterine environment provided no evidence that it causally raises offspring blood pressure, indicating that the inverse birth weight-blood pressure association is attributable to genetic effects, and not to intrauterine programming.

323 citations


Authors

Showing all 27402 results

NameH-indexPapersCitations
H. S. Chen1792401178529
Alvaro Pascual-Leone16596998251
Sabino Matarrese155775123278
Subir Sarkar1491542144614
Carlos Escobar148118495346
Marco Costa1461458105096
Carmen García139150396925
Javier Cuevas1381689103604
M. I. Martínez134125179885
Marco Aurelio Diaz134101593580
Avelino Corma134104989095
Kevin Lannon133165295436
Marina Cobal132107885437
Mogens Dam131110983717
Marcel Vos13199385194
Network Information
Related Institutions (5)
University of Barcelona
108.5K papers, 3.7M citations

97% related

Spanish National Research Council
220.4K papers, 7.6M citations

93% related

University of Turin
77.9K papers, 2.4M citations

91% related

University of Groningen
69.1K papers, 2.9M citations

91% related

University of Milan
139.7K papers, 4.6M citations

91% related

Performance
Metrics
No. of papers from the Institution in previous years
YearPapers
20251
2023140
2022487
20214,747
20204,696
20193,996