scispace - formally typeset
Search or ask a question
Institution

University of Valencia

EducationValencia, Spain
About: University of Valencia is a education organization based out in Valencia, Spain. It is known for research contribution in the topics: Population & Neutrino. The organization has 27096 authors who have published 65669 publications receiving 1765689 citations. The organization is also known as: Universitat de València & UV.


Papers
More filters
Journal ArticleDOI
TL;DR: The Global Burden of Disease, Injuries, and Risk Factor study 2013 (GBD 2013) as mentioned in this paper provides a timely opportunity to update the comparative risk assessment with new data for exposure, relative risks, and evidence on the appropriate counterfactual risk distribution.

1,656 citations

Journal ArticleDOI
Hreinn Stefansson1, Hreinn Stefansson2, Roel A. Ophoff3, Roel A. Ophoff2, Roel A. Ophoff4, Stacy Steinberg2, Stacy Steinberg1, Ole A. Andreassen5, Sven Cichon6, Dan Rujescu7, Thomas Werge8, Olli Pietilainen9, Ole Mors10, Preben Bo Mortensen11, Engilbert Sigurdsson12, Omar Gustafsson1, Mette Nyegaard11, Annamari Tuulio-Henriksson13, Andres Ingason1, Thomas Hansen8, Jaana Suvisaari13, Jouko Lönnqvist13, Tiina Paunio, Anders D. Børglum11, Anders D. Børglum10, Annette M. Hartmann7, Anders Fink-Jensen8, Merete Nordentoft14, David M. Hougaard, Bent Nørgaard-Pedersen, Yvonne Böttcher1, Jes Olesen15, René Breuer16, Hans-Jürgen Möller7, Ina Giegling7, Henrik B. Rasmussen8, Sally Timm8, Manuel Mattheisen6, István Bitter17, János Réthelyi17, Brynja B. Magnusdottir12, Thordur Sigmundsson12, Pall I. Olason1, Gisli Masson1, Jeffrey R. Gulcher1, Magnús Haraldsson12, Ragnheidur Fossdal1, Thorgeir E. Thorgeirsson1, Unnur Thorsteinsdottir1, Unnur Thorsteinsdottir12, Mirella Ruggeri18, Sarah Tosato18, Barbara Franke19, Eric Strengman3, Lambertus A. Kiemeney19, Ingrid Melle5, Srdjan Djurovic5, Lilia I. Abramova20, Kaleda Vg20, Julio Sanjuán21, Rosa de Frutos21, Elvira Bramon22, Evangelos Vassos22, Gillian Fraser23, Ulrich Ettinger22, Marco Picchioni22, Nicholas Walker, T. Toulopoulou22, Anna C. Need24, Dongliang Ge24, Joeng Lim Yoon4, Kevin V. Shianna24, Nelson B. Freimer4, Rita M. Cantor4, Robin M. Murray22, Augustine Kong1, Vera Golimbet20, Angel Carracedo25, Celso Arango26, Javier Costas, Erik G. Jönsson27, Lars Terenius27, Ingrid Agartz27, Hannes Petursson12, Markus M. Nöthen6, Marcella Rietschel16, Paul M. Matthews28, Pierandrea Muglia29, Leena Peltonen9, David St Clair23, David Goldstein24, Kari Stefansson1, Kari Stefansson12, David A. Collier30, David A. Collier22 
06 Aug 2009-Nature
TL;DR: Findings implicating the MHC region are consistent with an immune component to schizophrenia risk, whereas the association with NRGN and TCF4 points to perturbation of pathways involved in brain development, memory and cognition.
Abstract: Schizophrenia is a complex disorder, caused by both genetic and environmental factors and their interactions. Research on pathogenesis has traditionally focused on neurotransmitter systems in the brain, particularly those involving dopamine. Schizophrenia has been considered a separate disease for over a century, but in the absence of clear biological markers, diagnosis has historically been based on signs and symptoms. A fundamental message emerging from genome-wide association studies of copy number variations (CNVs) associated with the disease is that its genetic basis does not necessarily conform to classical nosological disease boundaries. Certain CNVs confer not only high relative risk of schizophrenia but also of other psychiatric disorders. The structural variations associated with schizophrenia can involve several genes and the phenotypic syndromes, or the 'genomic disorders', have not yet been characterized. Single nucleotide polymorphism (SNP)-based genome-wide association studies with the potential to implicate individual genes in complex diseases may reveal underlying biological pathways. Here we combined SNP data from several large genome-wide scans and followed up the most significant association signals. We found significant association with several markers spanning the major histocompatibility complex (MHC) region on chromosome 6p21.3-22.1, a marker located upstream of the neurogranin gene (NRGN) on 11q24.2 and a marker in intron four of transcription factor 4 (TCF4) on 18q21.2. Our findings implicating the MHC region are consistent with an immune component to schizophrenia risk, whereas the association with NRGN and TCF4 points to perturbation of pathways involved in brain development, memory and cognition.

1,625 citations

Journal ArticleDOI
TL;DR: In this paper, the authors presented the first spectroscopic data from the Baryon Oscillation Spectroscopic Survey (BOSS) for the Sloan Digital Sky Survey III (SDSS-III) dataset.
Abstract: The Sloan Digital Sky Survey III (SDSS-III) presents the first spectroscopic data from the Baryon Oscillation Spectroscopic Survey (BOSS). This ninth data release (DR9) of the SDSS project includes 535,995 new galaxy spectra (median z ~ 0.52), 102,100 new quasar spectra (median z ~ 2.32), and 90,897 new stellar spectra, along with the data presented in previous data releases. These spectra were obtained with the new BOSS spectrograph and were taken between 2009 December and 2011 July. In addition, the stellar parameters pipeline, which determines radial velocities, surface temperatures, surface gravities, and metallicities of stars, has been updated and refined with improvements in temperature estimates for stars with T eff -0.5. DR9 includes new stellar parameters for all stars presented in DR8, including stars from SDSS-I and II, as well as those observed as part of the SEGUE-2. The astrometry error introduced in the DR8 imaging catalogs has been corrected in the DR9 data products. The next data release for SDSS-III will be in Summer 2013, which will present the first data from the APOGEE along with another year of data from BOSS, followed by the final SDSS-III data release in 2014 December.

1,623 citations

Journal ArticleDOI
TL;DR: Patterns of the epidemiological transition with a composite indicator of sociodemographic status, which was constructed from income per person, average years of schooling after age 15 years, and the total fertility rate and mean age of the population, were quantified.

1,609 citations

Journal ArticleDOI
30 Oct 2003-Nature
TL;DR: Using a simple method based on Cre/lox recombination to detect cell fusion events, it is demonstrated that bone-marrow-derived cells (BMDCs) fuse spontaneously with neural progenitors in vitro, raising the possibility that cell fusion may contribute to the development or maintenance of these key cell types.
Abstract: Recent studies have suggested that bone marrow cells possess a broad differentiation potential, being able to form new liver cells, cardiomyocytes and neurons1,2. Several groups have attributed this apparent plasticity to ‘transdifferentiation’3,4,5. Others, however, have suggested that cell fusion could explain these results6,7,8,9. Using a simple method based on Cre/lox recombination to detect cell fusion events, we demonstrate that bone-marrow-derived cells (BMDCs) fuse spontaneously with neural progenitors in vitro. Furthermore, bone marrow transplantation demonstrates that BMDCs fuse in vivo with hepatocytes in liver, Purkinje neurons in the brain and cardiac muscle in the heart, resulting in the formation of multinucleated cells. No evidence of transdifferentiation without fusion was observed in these tissues. These observations provide the first in vivo evidence for cell fusion of BMDCs with neurons and cardiomyocytes, raising the possibility that cell fusion may contribute to the development or maintenance of these key cell types.

1,600 citations


Authors

Showing all 27402 results

NameH-indexPapersCitations
H. S. Chen1792401178529
Alvaro Pascual-Leone16596998251
Sabino Matarrese155775123278
Subir Sarkar1491542144614
Carlos Escobar148118495346
Marco Costa1461458105096
Carmen García139150396925
Javier Cuevas1381689103604
M. I. Martínez134125179885
Marco Aurelio Diaz134101593580
Avelino Corma134104989095
Kevin Lannon133165295436
Marina Cobal132107885437
Mogens Dam131110983717
Marcel Vos13199385194
Network Information
Related Institutions (5)
University of Barcelona
108.5K papers, 3.7M citations

97% related

Spanish National Research Council
220.4K papers, 7.6M citations

93% related

University of Turin
77.9K papers, 2.4M citations

91% related

University of Groningen
69.1K papers, 2.9M citations

91% related

University of Milan
139.7K papers, 4.6M citations

91% related

Performance
Metrics
No. of papers from the Institution in previous years
YearPapers
20251
2023140
2022487
20214,747
20204,696
20193,996