scispace - formally typeset
Search or ask a question

Showing papers by "University of Victoria published in 2020"


Book
Georges Aad1, E. Abat2, Jalal Abdallah3, Jalal Abdallah4  +3029 moreInstitutions (164)
23 Feb 2020
TL;DR: The ATLAS detector as installed in its experimental cavern at point 1 at CERN is described in this paper, where a brief overview of the expected performance of the detector when the Large Hadron Collider begins operation is also presented.
Abstract: The ATLAS detector as installed in its experimental cavern at point 1 at CERN is described in this paper. A brief overview of the expected performance of the detector when the Large Hadron Collider begins operation is also presented.

3,111 citations


Journal ArticleDOI
28 Jan 2020-ACS Nano
TL;DR: Prominent authors from all over the world joined efforts to summarize the current state-of-the-art in understanding and using SERS, as well as to propose what can be expected in the near future, in terms of research, applications, and technological development.
Abstract: The discovery of the enhancement of Raman scattering by molecules adsorbed on nanostructured metal surfaces is a landmark in the history of spectroscopic and analytical techniques. Significant experimental and theoretical effort has been directed toward understanding the surface-enhanced Raman scattering (SERS) effect and demonstrating its potential in various types of ultrasensitive sensing applications in a wide variety of fields. In the 45 years since its discovery, SERS has blossomed into a rich area of research and technology, but additional efforts are still needed before it can be routinely used analytically and in commercial products. In this Review, prominent authors from around the world joined together to summarize the state of the art in understanding and using SERS and to predict what can be expected in the near future in terms of research, applications, and technological development. This Review is dedicated to SERS pioneer and our coauthor, the late Prof. Richard Van Duyne, whom we lost during the preparation of this article.

1,768 citations


Journal ArticleDOI
Marielle Saunois1, Ann R. Stavert2, Ben Poulter3, Philippe Bousquet1, Josep G. Canadell2, Robert B. Jackson4, Peter A. Raymond5, Edward J. Dlugokencky6, Sander Houweling7, Sander Houweling8, Prabir K. Patra9, Prabir K. Patra10, Philippe Ciais1, Vivek K. Arora, David Bastviken11, Peter Bergamaschi, Donald R. Blake12, Gordon Brailsford13, Lori Bruhwiler6, Kimberly M. Carlson14, Mark Carrol3, Simona Castaldi15, Naveen Chandra9, Cyril Crevoisier16, Patrick M. Crill17, Kristofer R. Covey18, Charles L. Curry19, Giuseppe Etiope20, Giuseppe Etiope21, Christian Frankenberg22, Nicola Gedney23, Michaela I. Hegglin24, Lena Höglund-Isaksson25, Gustaf Hugelius17, Misa Ishizawa26, Akihiko Ito26, Greet Janssens-Maenhout, Katherine M. Jensen27, Fortunat Joos28, Thomas Kleinen29, Paul B. Krummel2, Ray L. Langenfelds2, Goulven Gildas Laruelle, Licheng Liu30, Toshinobu Machida26, Shamil Maksyutov26, Kyle C. McDonald27, Joe McNorton31, Paul A. Miller32, Joe R. Melton, Isamu Morino26, Jurek Müller28, Fabiola Murguia-Flores33, Vaishali Naik34, Yosuke Niwa26, Sergio Noce, Simon O'Doherty33, Robert J. Parker35, Changhui Peng36, Shushi Peng37, Glen P. Peters, Catherine Prigent, Ronald G. Prinn38, Michel Ramonet1, Pierre Regnier, William J. Riley39, Judith A. Rosentreter40, Arjo Segers, Isobel J. Simpson12, Hao Shi41, Steven J. Smith42, L. Paul Steele2, Brett F. Thornton17, Hanqin Tian41, Yasunori Tohjima26, Francesco N. Tubiello43, Aki Tsuruta44, Nicolas Viovy1, Apostolos Voulgarakis45, Apostolos Voulgarakis46, Thomas Weber47, Michiel van Weele48, Guido R. van der Werf7, Ray F. Weiss49, Doug Worthy, Debra Wunch50, Yi Yin1, Yi Yin22, Yukio Yoshida26, Weiya Zhang32, Zhen Zhang51, Yuanhong Zhao1, Bo Zheng1, Qing Zhu39, Qiuan Zhu52, Qianlai Zhuang30 
Université Paris-Saclay1, Commonwealth Scientific and Industrial Research Organisation2, Goddard Space Flight Center3, Stanford University4, Yale University5, National Oceanic and Atmospheric Administration6, VU University Amsterdam7, Netherlands Institute for Space Research8, Japan Agency for Marine-Earth Science and Technology9, Chiba University10, Linköping University11, University of California, Irvine12, National Institute of Water and Atmospheric Research13, New York University14, Seconda Università degli Studi di Napoli15, École Polytechnique16, Stockholm University17, Skidmore College18, University of Victoria19, National Institute of Geophysics and Volcanology20, Babeș-Bolyai University21, California Institute of Technology22, Met Office23, University of Reading24, International Institute for Applied Systems Analysis25, National Institute for Environmental Studies26, City University of New York27, University of Bern28, Max Planck Society29, Purdue University30, European Centre for Medium-Range Weather Forecasts31, Lund University32, University of Bristol33, Geophysical Fluid Dynamics Laboratory34, University of Leicester35, Université du Québec à Montréal36, Peking University37, Massachusetts Institute of Technology38, Lawrence Berkeley National Laboratory39, Southern Cross University40, Auburn University41, Joint Global Change Research Institute42, Food and Agriculture Organization43, Finnish Meteorological Institute44, Imperial College London45, Technical University of Crete46, University of Rochester47, Royal Netherlands Meteorological Institute48, Scripps Institution of Oceanography49, University of Toronto50, University of Maryland, College Park51, Hohai University52
TL;DR: The second version of the living review paper dedicated to the decadal methane budget, integrating results of top-down studies (atmospheric observations within an atmospheric inverse-modeling framework) and bottom-up estimates (including process-based models for estimating land surface emissions and atmospheric chemistry, inventories of anthropogenic emissions, and data-driven extrapolations) as discussed by the authors.
Abstract: Understanding and quantifying the global methane (CH4) budget is important for assessing realistic pathways to mitigate climate change. Atmospheric emissions and concentrations of CH4 continue to increase, making CH4 the second most important human-influenced greenhouse gas in terms of climate forcing, after carbon dioxide (CO2). The relative importance of CH4 compared to CO2 depends on its shorter atmospheric lifetime, stronger warming potential, and variations in atmospheric growth rate over the past decade, the causes of which are still debated. Two major challenges in reducing uncertainties in the atmospheric growth rate arise from the variety of geographically overlapping CH4 sources and from the destruction of CH4 by short-lived hydroxyl radicals (OH). To address these challenges, we have established a consortium of multidisciplinary scientists under the umbrella of the Global Carbon Project to synthesize and stimulate new research aimed at improving and regularly updating the global methane budget. Following Saunois et al. (2016), we present here the second version of the living review paper dedicated to the decadal methane budget, integrating results of top-down studies (atmospheric observations within an atmospheric inverse-modelling framework) and bottom-up estimates (including process-based models for estimating land surface emissions and atmospheric chemistry, inventories of anthropogenic emissions, and data-driven extrapolations). For the 2008–2017 decade, global methane emissions are estimated by atmospheric inversions (a top-down approach) to be 576 Tg CH4 yr−1 (range 550–594, corresponding to the minimum and maximum estimates of the model ensemble). Of this total, 359 Tg CH4 yr−1 or ∼ 60 % is attributed to anthropogenic sources, that is emissions caused by direct human activity (i.e. anthropogenic emissions; range 336–376 Tg CH4 yr−1 or 50 %–65 %). The mean annual total emission for the new decade (2008–2017) is 29 Tg CH4 yr−1 larger than our estimate for the previous decade (2000–2009), and 24 Tg CH4 yr−1 larger than the one reported in the previous budget for 2003–2012 (Saunois et al., 2016). Since 2012, global CH4 emissions have been tracking the warmest scenarios assessed by the Intergovernmental Panel on Climate Change. Bottom-up methods suggest almost 30 % larger global emissions (737 Tg CH4 yr−1, range 594–881) than top-down inversion methods. Indeed, bottom-up estimates for natural sources such as natural wetlands, other inland water systems, and geological sources are higher than top-down estimates. The atmospheric constraints on the top-down budget suggest that at least some of these bottom-up emissions are overestimated. The latitudinal distribution of atmospheric observation-based emissions indicates a predominance of tropical emissions (∼ 65 % of the global budget, < 30∘ N) compared to mid-latitudes (∼ 30 %, 30–60∘ N) and high northern latitudes (∼ 4 %, 60–90∘ N). The most important source of uncertainty in the methane budget is attributable to natural emissions, especially those from wetlands and other inland waters. Some of our global source estimates are smaller than those in previously published budgets (Saunois et al., 2016; Kirschke et al., 2013). In particular wetland emissions are about 35 Tg CH4 yr−1 lower due to improved partition wetlands and other inland waters. Emissions from geological sources and wild animals are also found to be smaller by 7 Tg CH4 yr−1 by 8 Tg CH4 yr−1, respectively. However, the overall discrepancy between bottom-up and top-down estimates has been reduced by only 5 % compared to Saunois et al. (2016), due to a higher estimate of emissions from inland waters, highlighting the need for more detailed research on emissions factors. Priorities for improving the methane budget include (i) a global, high-resolution map of water-saturated soils and inundated areas emitting methane based on a robust classification of different types of emitting habitats; (ii) further development of process-based models for inland-water emissions; (iii) intensification of methane observations at local scales (e.g., FLUXNET-CH4 measurements) and urban-scale monitoring to constrain bottom-up land surface models, and at regional scales (surface networks and satellites) to constrain atmospheric inversions; (iv) improvements of transport models and the representation of photochemical sinks in top-down inversions; and (v) development of a 3D variational inversion system using isotopic and/or co-emitted species such as ethane to improve source partitioning.

1,047 citations


Journal ArticleDOI
Jens Kattge1, Gerhard Bönisch2, Sandra Díaz3, Sandra Lavorel  +751 moreInstitutions (314)
TL;DR: The extent of the trait data compiled in TRY is evaluated and emerging patterns of data coverage and representativeness are analyzed to conclude that reducing data gaps and biases in the TRY database remains a key challenge and requires a coordinated approach to data mobilization and trait measurements.
Abstract: Plant traits-the morphological, anatomical, physiological, biochemical and phenological characteristics of plants-determine how plants respond to environmental factors, affect other trophic levels, and influence ecosystem properties and their benefits and detriments to people. Plant trait data thus represent the basis for a vast area of research spanning from evolutionary biology, community and functional ecology, to biodiversity conservation, ecosystem and landscape management, restoration, biogeography and earth system modelling. Since its foundation in 2007, the TRY database of plant traits has grown continuously. It now provides unprecedented data coverage under an open access data policy and is the main plant trait database used by the research community worldwide. Increasingly, the TRY database also supports new frontiers of trait-based plant research, including the identification of data gaps and the subsequent mobilization or measurement of new data. To support this development, in this article we evaluate the extent of the trait data compiled in TRY and analyse emerging patterns of data coverage and representativeness. Best species coverage is achieved for categorical traits-almost complete coverage for 'plant growth form'. However, most traits relevant for ecology and vegetation modelling are characterized by continuous intraspecific variation and trait-environmental relationships. These traits have to be measured on individual plants in their respective environment. Despite unprecedented data coverage, we observe a humbling lack of completeness and representativeness of these continuous traits in many aspects. We, therefore, conclude that reducing data gaps and biases in the TRY database remains a key challenge and requires a coordinated approach to data mobilization and trait measurements. This can only be achieved in collaboration with other initiatives.

882 citations


Journal ArticleDOI
TL;DR: Findings can guide efforts to preserve and promote child health during the COVID-19 outbreak and crisis recovery period, and to inform strategies to mitigate potential harm during future pandemics.
Abstract: Healthy childhood development is fostered through sufficient physical activity (PA; including time outdoors), limiting sedentary behaviours (SB), and adequate sleep; collectively known as movement behaviours. Though the COVID-19 virus outbreak has changed the daily lives of children and youth, it is unknown to what extent related restrictions may compromise the ability to play and meet movement behaviour recommendations. This secondary data analysis examined the immediate impacts of COVID-19 restrictions on movement and play behaviours in children and youth. A national sample of Canadian parents (n = 1472) of children (5–11 years) or youth (12–17 years) (54% girls) completed an online survey that assessed immediate changes in child movement and play behaviours during the COVID-19 outbreak. Behaviours included PA and play, SB, and sleep. Family demographics and parental factors that may influence movement behaviours were assessed. Correlations between behaviours and demographic and parental factors were determined. For open-ended questions, word frequency distributions were reported. Only 4.8% (2.8% girls, 6.5% boys) of children and 0.6% (0.8% girls, 0.5% boys) of youth were meeting combined movement behaviour guidelines during COVID-19 restrictions. Children and youth had lower PA levels, less outside time, higher SB (including leisure screen time), and more sleep during the outbreak. Parental encouragement and support, parental engagement in PA, and family dog ownership were positively associated with healthy movement behaviours. Although families spent less time in PA and more time in SB, several parents reported adopting new hobbies or accessing new resources. This study provides evidence of immediate collateral consequences of the COVID-19 outbreak, demonstrating an adverse impact on the movement and play behaviours of Canadian children and youth. These findings can guide efforts to preserve and promote child health during the COVID-19 outbreak and crisis recovery period, and to inform strategies to mitigate potential harm during future pandemics.

644 citations


Journal ArticleDOI
18 Sep 2020-Science
TL;DR: To avoid a massive build-up of plastic in the environment, coordinated global action is urgently needed to reduce plastic consumption; increase rates of reuse, waste collection, and recycling; expand safe disposal systems; and accelerate innovation in the plastic value chain.
Abstract: Plastic pollution is a pervasive and growing problem. To estimate the effectiveness of interventions to reduce plastic pollution, we modeled stocks and flows of municipal solid waste and four sources of microplastics through the global plastic system for five scenarios between 2016 and 2040. Implementing all feasible interventions reduced plastic pollution by 40% from 2016 rates and 78% relative to “business as usual” in 2040. Even with immediate and concerted action, 710 million metric tons of plastic waste cumulatively entered aquatic and terrestrial ecosystems. To avoid a massive build-up of plastic in the environment, coordinated global action is urgently needed to reduce plastic consumption; increase rates of reuse, waste collection, and recycling; expand safe disposal systems; and accelerate innovation in the plastic value chain.

613 citations


Journal ArticleDOI
TL;DR: The majority of individuals with SCD will not show progressive cognitive decline, and an individually tailored diagnostic process might be reasonable to identify or exclude underlying medical conditions in an individual withSCD who actively seeks medical help.
Abstract: A growing awareness about brain health and Alzheimer's disease in the general population is leading to an increasing number of cognitively unimpaired individuals, who are concerned that they have reduced cognitive function, to approach the medical system for help. The term subjective cognitive decline (SCD) was conceived in 2014 to describe this condition. Epidemiological data provide evidence that the risk for mild cognitive impairment and dementia is increased in individuals with SCD. However, the majority of individuals with SCD will not show progressive cognitive decline. An individually tailored diagnostic process might be reasonable to identify or exclude underlying medical conditions in an individual with SCD who actively seeks medical help. An increasing number of studies are investigating the link between SCD and the very early stages of Alzheimer's disease and other neurodegenerative diseases.

518 citations


Journal ArticleDOI
TL;DR: In this paper, the authors present a collaborative reaction that narrates the overall view, reflections from the K-12 and higher educational landscape, lessons learned and suggestions from a total of 31 countries across the world with a representation of 62,7% of the whole world population.
Abstract: Uncertain times require prompt reflexes to survive and this study is a collaborative reflex to better understand uncertainty and navigate through it. The Coronavirus (Covid-19) pandemic hit hard and interrupted many dimensions of our lives, particularly education. As a response to interruption of education due to the Covid-19 pandemic, this study is a collaborative reaction that narrates the overall view, reflections from the K-12 and higher educational landscape, lessons learned and suggestions from a total of 31 countries across the world with a representation of 62,7% of the whole world population. In addition to the value of each case by country, the synthesis of this research suggests that the current practices can be defined as emergency remote education and this practice is different from planned practices such as distance education, online learning or other derivations. Above all, this study points out how social injustice, inequity and the digital divide have been exacerbated during the pandemic and need unique and targeted measures if they are to be addressed. While there are support communities and mechanisms, parents are overburdened between regular daily/professional duties and emerging educational roles, and all parties are experiencing trauma, psychological pressure and anxiety to various degrees, which necessitates a pedagogy of care, affection and empathy. In terms of educational processes, the interruption of education signifies the importance of openness in education and highlights issues that should be taken into consideration such as using alternative assessment and evaluation methods as well as concerns about surveillance, ethics, and data privacy resulting from nearly exclusive dependency on online solutions.

452 citations


Journal ArticleDOI
TL;DR: Perovskite QD resurfacing is reported to achieve a bipolar shell consisting of an inner anion shell, and an outer shell comprised of cations and polar solvent molecules, to fabricate blue and green light-emitting diodes with improved mobility.
Abstract: Colloidal quantum dot (QD) solids are emerging semiconductors that have been actively explored in fundamental studies of charge transport1 and for applications in optoelectronics2. Forming high-quality QD solids—necessary for device fabrication—requires substitution of the long organic ligands used for synthesis with short ligands that provide increased QD coupling and improved charge transport3. However, in perovskite QDs, the polar solvents used to carry out the ligand exchange decompose the highly ionic perovskites4. Here we report perovskite QD resurfacing to achieve a bipolar shell consisting of an inner anion shell, and an outer shell comprised of cations and polar solvent molecules. The outer shell is electrostatically adsorbed to the negatively charged inner shell. This approach produces strongly confined perovskite QD solids that feature improved carrier mobility (≥0.01 cm2 V−1 s−1) and reduced trap density relative to previously reported low-dimensional perovskites. Blue-emitting QD films exhibit photoluminescence quantum yields exceeding 90%. By exploiting the improved mobility, we have been able to fabricate CsPbBr3 QD-based efficient blue and green light-emitting diodes. Blue devices with reduced trap density have an external quantum efficiency of 12.3%; the green devices achieve an external quantum efficiency of 22%. A solution-based ligand-exchange strategy enables the realization of close-packed quantum dot solid films with near-unity photoluminescence quantum yield and high charge carrier mobility.

451 citations


Journal ArticleDOI
TL;DR: In this article, a collection of initial-condition large ensembles (LEs) generated with seven Earth system models under historical and future radiative forcing scenarios provides new insights into uncertainties due to internal variability versus model differences.
Abstract: Internal variability in the climate system confounds assessment of human-induced climate change and imposes irreducible limits on the accuracy of climate change projections, especially at regional and decadal scales. A new collection of initial-condition large ensembles (LEs) generated with seven Earth system models under historical and future radiative forcing scenarios provides new insights into uncertainties due to internal variability versus model differences. These data enhance the assessment of climate change risks, including extreme events, and offer a powerful testbed for new methodologies aimed at separating forced signals from internal variability in the observational record. Opportunities and challenges confronting the design and dissemination of future LEs, including increased spatial resolution and model complexity alongside emerging Earth system applications, are discussed. Climate change detection is confounded by internal variability, but recent initial-condition large ensembles (LEs) have begun addressing this issue. This Perspective discusses the value of multi-model LEs, the challenges of providing them and their role in future climate change research.

426 citations


Journal ArticleDOI
TL;DR: Xiao et al. as mentioned in this paper used strongly reductive surface-anchoring zwitterionic molecules to suppress Sn2+ oxidation and passivate defects at the grain surfaces in mixed lead-tin perovskite films, enabling an efficiency of 21.7% (certified 20.7%).
Abstract: Monolithic all-perovskite tandem solar cells offer an avenue to increase power conversion efficiency beyond the limits of single-junction cells. It is an important priority to unite efficiency, uniformity and stability, yet this has proven challenging because of high trap density and ready oxidation in narrow-bandgap mixed lead–tin perovskite subcells. Here we report simultaneous enhancements in the efficiency, uniformity and stability of narrow-bandgap subcells using strongly reductive surface-anchoring zwitterionic molecules. The zwitterionic antioxidant inhibits Sn2+ oxidation and passivates defects at the grain surfaces in mixed lead–tin perovskite films, enabling an efficiency of 21.7% (certified 20.7%) for single-junction solar cells. We further obtain a certified efficiency of 24.2% in 1-cm2-area all-perovskite tandem cells and in-lab power conversion efficiencies of 25.6% and 21.4% for 0.049 cm2 and 12 cm2 devices, respectively. The encapsulated tandem devices retain 88% of their initial performance following 500 hours of operation at a device temperature of 54–60 °C under one-sun illumination in ambient conditions. Ensuring both stability and efficiency in mixed lead–tin perovskite solar cells is crucial to the development of all-perovskite tandems. Xiao et al. use an antioxidant zwitterionic molecule to suppress tin oxidation thus enabling large-area tandem cells with 24.2% efficiency and operational stability over 500 hours.

Journal ArticleDOI
TL;DR: Estimates of the status of fish stocks from all available scientific assessments are compiled, and it is shown that, on average, fish stocks are increasing where they are assessed, and where fisheries management is less intense, stock status and trends are worse.
Abstract: Marine fish stocks are an important part of the world food system and are particularly important for many of the poorest people of the world. Most existing analyses suggest overfishing is increasing, and there is widespread concern that fish stocks are decreasing throughout most of the world. We assembled trends in abundance and harvest rate of stocks that are scientifically assessed, constituting half of the reported global marine fish catch. For these stocks, on average, abundance is increasing and is at proposed target levels. Compared with regions that are intensively managed, regions with less-developed fisheries management have, on average, 3-fold greater harvest rates and half the abundance as assessed stocks. Available evidence suggests that the regions without assessments of abundance have little fisheries management, and stocks are in poor shape. Increased application of area-appropriate fisheries science recommendations and management tools are still needed for sustaining fisheries in places where they are lacking.

Journal ArticleDOI
28 Mar 2020
TL;DR: In this article, the degradation mechanisms of Ni-rich NMC cathodes and graphite anodes are reviewed and trade-offs between modification techniques as well as controversies are discussed for a deeper understanding of the mitigation strategies of NMC/graphite NMC batteries.
Abstract: The demand for lithium-ion batteries (LIBs) with high mass-specific capacities, high rate capabilities and long-term cyclabilities is driving the research and development of LIBs with nickel-rich NMC (LiNixMnyCo1−x−yO2, $$x \geqslant 0.5$$) cathodes and graphite (LixC6) anodes. Based on this, this review will summarize recently reported and widely recognized studies of the degradation mechanisms of Ni-rich NMC cathodes and graphite anodes. And with a broad collection of proposed mechanisms on both atomic and micrometer scales, this review can supplement previous degradation studies of Ni-rich NMC batteries. In addition, this review will categorize advanced mitigation strategies for both electrodes based on different modifications in which Ni-rich NMC cathode improvement strategies involve dopants, gradient layers, surface coatings, carbon matrixes and advanced synthesis methods, whereas graphite anode improvement strategies involve surface coatings, charge/discharge protocols and electrolyte volume estimations. Electrolyte components that can facilitate the stabilization of anodic solid electrolyte interfaces are also reviewed, and trade-offs between modification techniques as well as controversies are discussed for a deeper understanding of the mitigation strategies of Ni-rich NMC/graphite LIBs. Furthermore, this review will present various physical and electrochemical diagnostic tools that are vital in the elucidation of degradation mechanisms during operation to supplement future degradation studies. Finally, this review will summarize current research focuses and propose future research directions. The demand for lithium-ion batteries (LIBs) with high mass specific capacities, high rate capabilities and longterm cyclabilities is driving the research and development of LIBs with nickel-rich NMC (LiNixMnyCo1−x−yO2, x ≥ 0.5) cathodes and graphite (LixC6) anodes. Based on this, this review will summarize recently reported and widely recognized studies of the degradation mechanisms of Ni-rich NMC cathodes and graphite anodes. And with a broad collection of proposed mechanisms on both atomic and micrometer scales, this review can supplement previous degradation studies of Ni-rich NMC batteries. In addition, this review will categorize advanced mitigation strategies for both electrodes based on different modifications in which Ni-rich NMC cathode improvement strategies involve dopants, gradient layers, surface coatings, carbon matrixes and advanced synthesis methods, whereas graphite anode improvement strategies involve surface coatings, charge/discharge protocols and electrolyte volume estimations. Electrolyte components that can facilitate the stabilization of anodic solid-electrolyte interfaces (SEIs) are also reviewed and tradeoffs between modification techniques as well as controversies are discussed for a deeper understanding of the mitigation strategies of Ni-rich NMC/graphite LIBs. Furthermore, this review will present various physical and electrochemical diagnostic tools that are vital in the elucidation of degradation mechanisms during operation to supplement future degradation studies. Finally, this review will summarize current research focuses and propose future research directions.

Journal ArticleDOI
TL;DR: Chiral hybrid organic-inorganic perovskites (HOIPs) as discussed by the authors are a promising material for chiroptoelectronics, spintronics and ferroelectrics.
Abstract: Hybrid organic–inorganic perovskites (HOIPs) offer long carrier-diffusion lengths, high absorption coefficients, tunable band gaps and long spin lifetimes. The flexible crystal structure and ionic nature of HOIPs make it possible to allow tuning of their material properties through rational design, including the incorporation of chiral organic ligands. Recently, chiral HOIPs have emerged as promising materials for chiroptoelectronics, spintronics and ferroelectrics. They exhibit high photoluminescence polarization (17% without an external magnetic field), good device performance (a circularly polarized photodetector had 100 times higher responsivity than one based on a chiral metasurface) and high saturated polarization (~2 times higher than that of barium titanate). Here, we review the latest advances in chiral HOIPs and investigate the specific benefits of combining chiral organic and inorganic components in perovskites. We discuss demonstrations of chiroptical and ferroelectric applications, and conclude with our perspective on the future opportunities for chiral HOIPs. Chiral hybrid organic–inorganic perovskites combine the remarkable optical, electrical and spintronic properties of perovskites with chirality. This Review systematically introduces the latest advances in chiral perovskites, surveys their structure–property relationships and details their chiroptical and ferroelectric applications.

Journal ArticleDOI
TL;DR: The Physics Beyond Colliders initiative as mentioned in this paper is an exploratory study aimed at exploiting the full scientific potential of the CERN's accelerator complex and scientific infrastructures through projects complementary to the LHC and other possible future colliders.
Abstract: The Physics Beyond Colliders initiative is an exploratory study aimed at exploiting the full scientific potential of the CERN's accelerator complex and scientific infrastructures through projects complementary to the LHC and other possible future colliders. These projects will target fundamental physics questions in modern particle physics. This document presents the status of the proposals presented in the framework of the Beyond Standard Model physics working group, and explore their physics reach and the impact that CERN could have in the next 10-20 years on the international landscape.

Journal ArticleDOI
TL;DR: The Canadian Society for Exercise Physiology assembled a Consensus Panel representing national organizations, content experts, methodologists, stakeholders, and end-users and followed an established guideline development procedure to create the Canadian 24-Hour Movement Guidelines for Adults aged 18-64 years and Adults aged 65 years or older: An Integration of Physical Activity, Sedentary Behaviour, and Sleep.
Abstract: The Canadian Society for Exercise Physiology assembled a Consensus Panel representing national organizations, content experts, methodologists, stakeholders, and end-users and followed an established guideline development procedure to create the Canadian 24-Hour Movement Guidelines for Adults aged 18-64 years and Adults aged 65 years or older: An Integration of Physical Activity, Sedentary Behaviour, and Sleep. These guidelines underscore the importance of movement behaviours across the whole 24-h day. The development process followed the strategy outlined in the Appraisal of Guidelines for Research and Evaluation (AGREE) II instrument. A large body of evidence was used to inform the guidelines including 2 de novo systematic reviews and 4 overviews of reviews examining the relationships among movement behaviours (physical activity, sedentary behaviour, sleep, and all behaviours together) and several health outcomes. Draft guideline recommendations were discussed at a 4-day in-person Consensus Panel meeting. Feedback from stakeholders was obtained by survey (n = 877) and the draft guidelines were revised accordingly. The final guidelines provide evidence-based recommendations for a healthy day (24-h), comprising a combination of sleep, sedentary behaviours, and light-intensity and moderate-to-vigorous-intensity physical activity. Dissemination and implementation efforts with corresponding evaluation plans are in place to help ensure that guideline awareness and use are optimized. Novelty First ever 24-Hour Movement Guidelines for Adults aged 18-64 years and Adults aged 65 years or older with consideration of a balanced approach to physical activity, sedentary behaviour, and sleep Finalizes the suite of 24-Hour Movement Guidelines for Canadians across the lifespan.

Journal ArticleDOI
TL;DR: In this article, the authors define the subclasses of normalized analytic functions with complex order and negative coefficients and derive their associated coefficient estimates, radii of close-to-convexity, starlikeness and convexity.
Abstract: Basic (or q-) series and basic (or q-) polynomials, especially the basic (or q-) hypergeometric functions and basic (or q-) hypergeometric polynomials, are known to have widespread applications, particularly in several areas of number theory and combinatorial analysis such as (for example) the theory of partitions. Our usages here, in this survey-cum-expository article, of the q-calculus and the fractional q-calculus in geometric function theory of complex analysis are believed to encourage and motivate significant further developments on these and other related topics. By applying a fractional q-calculus operator, we define the subclasses $${\mathcal{S}}_{n}^{\alpha }(\lambda ,\beta ,b,q)$$ and $${\mathcal{G}}_{n}^{\alpha }(\lambda ,\beta ,b,q)$$ of normalized analytic functions with complex order and negative coefficients. Among the results investigated for each of these function classes, we derive their associated coefficient estimates, radii of close-to-convexity, starlikeness and convexity, extreme points and growth and distortion theorems. Our investigation here is motivated essentially by the fact that basic (or q-) series and basic (or q-) polynomials, especially the basic (or q-) hypergeometric functions and basic (or q-) hypergeometric polynomials, are applicable particularly in several areas of number theory such as the theory of partitions. In fact, basic (or q-) hypergeometric functions are useful also in a wide variety of fields including, for example, combinatorial analysis, finite vector spaces, lie theory, particle physics, nonlinear electric circuit theory, mechanical engineering, theory of heat conduction, quantum mechanics, cosmology and statistics (see also (Srivastava and Karlsson in Multiple Gaussian hypergeometric series. pp 350–351, 1985) and the references cited thereon). In the last section on conclusion, we choose to point out the fact that the results for the q-analogues, which we consider in this article for $$0< q < 1$$, can easily (and possibly trivially) be translated into the corresponding results for the (p, q)-analogues (with $$0< q < p \leqq 1$$) by applying some obvious parametric and argument variations, the additional parameter p being redundant. Several other families of such extensively- and widely-investigated linear convolution operators as (for example) the Dziok–Srivastava, Srivastava–Wright and Srivastava–Attiya linear convolution operators, together with their extended and generalized versions, are also briefly considered.

Journal ArticleDOI
TL;DR: This review is focused on recent developments of surface-enhanced Raman scattering (SERS) applications in Analytical Chemistry and covers advances in the fabrication methods of SERS substrates, including nanoparticles immobilization techniques and advanced nanopatterning with metallic features.

Journal ArticleDOI
Georges Aad1, Brad Abbott2, Dale Charles Abbott3, Ovsat Abdinov4  +2934 moreInstitutions (199)
TL;DR: In this article, a search for the electroweak production of charginos and sleptons decaying into final states with two electrons or muons is presented, based on 139.fb$^{-1}$ of proton-proton collisions recorded by the ATLAS detector at the Large Hadron Collider at
Abstract: A search for the electroweak production of charginos and sleptons decaying into final states with two electrons or muons is presented. The analysis is based on 139 fb$^{-1}$ of proton–proton collisions recorded by the ATLAS detector at the Large Hadron Collider at $\sqrt{s}=13$ $\text {TeV}$. Three R-parity-conserving scenarios where the lightest neutralino is the lightest supersymmetric particle are considered: the production of chargino pairs with decays via either W bosons or sleptons, and the direct production of slepton pairs. The analysis is optimised for the first of these scenarios, but the results are also interpreted in the others. No significant deviations from the Standard Model expectations are observed and limits at 95% confidence level are set on the masses of relevant supersymmetric particles in each of the scenarios. For a massless lightest neutralino, masses up to 420 $\text {Ge}\text {V}$ are excluded for the production of the lightest-chargino pairs assuming W-boson-mediated decays and up to 1 $\text {TeV}$ for slepton-mediated decays, whereas for slepton-pair production masses up to 700 $\text {Ge}\text {V}$ are excluded assuming three generations of mass-degenerate sleptons.

Journal ArticleDOI
TL;DR: In this article, deep-blue high-colour-purity light-emitting materials are developed by using amine-based edge passivation, and they exhibit a maximum luminance of 5,240 cd m−2 and an external quantum efficiency of 4%.
Abstract: Deep-blue light-emitting diodes (LEDs) (emitting at wavelengths of less than 450 nm) are important for solid-state lighting, vivid displays and high-density information storage. Colloidal quantum dots, typically based on heavy metals such as cadmium and lead, are promising candidates for deep-blue LEDs, but these have so far had external quantum efficiencies lower than 1.7%. Here we present deep-blue light-emitting materials and devices based on carbon dots. The carbon dots produce emission with a narrow full-width at half-maximum (about 35 nm) with high photoluminescence quantum yield (70% ± 10%) and a colour coordinate (0.15, 0.05) closely approaching the standard colour Rec. 2020 (0.131, 0.046) specification. Structural and optical characterization, together with computational studies, reveal that amine-based passivation accounts for the efficient and high-colour-purity emission. Deep-blue LEDs based on these carbon dots display high performance with a maximum luminance of 5,240 cd m−2 and an external quantum efficiency of 4%, notably exceeding that of previously reported quantum-tuned solution-processed deep-blue LEDs. Deep-blue high-colour-purity light-emitting materials are developed by using amine-based edge passivation. The light-emitting diodes based on the carbon dots exhibit a maximum luminance of 5,240 cd m–2 and an external quantum efficiency of 4%.

Journal ArticleDOI
TL;DR: The estimation of the growth rate from the epidemic curve can be a challenge, because of its decays with time, and the estimation is subject to over-fitting due to the limited number of data points available.

Journal ArticleDOI
TL;DR: The implications of the COVID-19 pandemic for small-scale fishers, including marketing and processing aspects of the sector, and coastal fishing communities, drawing from news and reports from around the world are discussed in this paper.
Abstract: The COVID-19 pandemic has rapidly spread around the world with extensive social and economic effects. This editorial focuses specifically on the implications of the pandemic for small-scale fishers, including marketing and processing aspects of the sector, and coastal fishing communities, drawing from news and reports from around the world. Negative consequences to date have included complete shut-downs of some fisheries, knock-on economic effects from market disruptions, increased health risks for fishers, processors and communities, additional implications for marginalized groups, exacerbated vulnerabilities to other social and environmental stressors, and increased Illegal, Unreported and Unregulated fishing. Though much of the news is dire, there have been some positive outcomes such as food sharing, the revival of local food networks, increases in local sales through direct marketing and deliveries, collective actions to safeguard rights, collaborations between communities and governments, and reduced fishing pressure in some places. While the crisis is still unfolding, there is an urgent need to coordinate, plan and implement effective short- and long-term responses. Thus, we urge governments, development organizations, NGOs, donors, the private sector, and researchers to rapidly mobilize in support of small-scale fishers, coastal fishing communities, and associated civil society organizations, and suggest actions that can be taken by each to help these groups respond to the COVID-19 pandemic.

Journal ArticleDOI
01 Jul 2020
TL;DR: In this article, the USGS's Ecosystems Mission Area, Invasive Species Program, intramural research program of the U.S. Department of Agriculture, Animal and Plant Health Inspection Service, Wildlife Services, National Wildlife Research Center and an Ignite Grant #IGN07171717 from Innovate BC.
Abstract: This project was funded in part by USGS's Ecosystems Mission Area, Invasive Species Program, the intramural research program of the U.S. Department of Agriculture, Animal and Plant Health Inspection Service, Wildlife Services, National Wildlife Research Center and an Ignite Grant #IGN071717 from Innovate BC. We thank Nick Akins, Lauren Bergman, Leah Botkin, Erica Mize, Nikolas Grueneis, Xin Guan, Danyang (Sandy) Shen, Nathan Thompson, Kyle Von Ruden, Alvi Wadud, and Kristyne Wozney for technical support.

Journal ArticleDOI
Abstract: We determine the Milky Way (MW) mass profile inferred from fitting physically motivated models to the Gaia DR2 Galactic rotation curve and other data. Using various hydrodynamical simulations of MW-mass haloes, we show that the presence of baryons induces a contraction of the dark matter (DM) distribution in the inner regions, r . 20 kpc. We provide an analytic expression that relates the baryonic distribution to the change in the DM halo profile. For our galaxy, the contraction increases the enclosed DM halo mass by factors of roughly 1.3, 2 and 4 at radial distances of 20, 8 and 1 kpc, respectively compared to an uncontracted halo. Ignoring this contraction results in systematic biases in the inferred halo mass and concentration. We provide a best-fitting contracted NFW halo model to the MW rotation curve that matches the data very well†. The best-fit has a DM halo mass, MDM 200 = 0.97+0.24 −0.19×1012 M, and concentration before baryon contraction of 9.4 +1.9 −2.6 , which lie close to the median halo mass–concentration relation predicted in ΛCDM. The inferred total mass, Mtotal 200 = 1.08+0.20 −0.14 × 1012 M, is in good agreement with recent measurements. The model gives a MW stellar mass of 5.04+0.43 −0.52 × 1010 M and infers that the DM density at the Solar position is ρ DM = 8.8 +0.5 −0.5 ×10−3 M pc−3 ≡ 0.33+0.02 −0.02 GeV cm−3 . The rotation curve data can also be fitted with an uncontracted NFW halo model, but with very different DM and stellar parameters. The observations prefer the physically motivated contracted NFW halo, but the measurement uncertainties are too large to rule out the uncontracted NFW halo.

Journal ArticleDOI
TL;DR: In this article, results from the fully and biogeochemically coupled simulations in which CO2 increases at a rate of 1% 1/1/yr −1 /1pct CO2 from its preindustrial value are analyzed to quantify the magnitude of carbon-concentration and carbon-climate feedback parameters which measure the response of ocean and terrestrial carbon pools to changes in atmospheric CO2 concentration and the resulting change in global climate, respectively.
Abstract: . Results from the fully and biogeochemically coupled simulations in which CO2 increases at a rate of 1 % yr −1 (1pctCO2) from its preindustrial value are analyzed to quantify the magnitude of carbon–concentration and carbon–climate feedback parameters which measure the response of ocean and terrestrial carbon pools to changes in atmospheric CO2 concentration and the resulting change in global climate, respectively. The results are based on 11 comprehensive Earth system models from the most recent (sixth) Coupled Model Intercomparison Project (CMIP6) and compared with eight models from the fifth CMIP (CMIP5). The strength of the carbon–concentration feedback is of comparable magnitudes over land (mean ± standard deviation = 0.97 ± 0.40 PgC ppm −1 ) and ocean (0.79 ± 0.07 PgC ppm −1 ), while the carbon–climate feedback over land ( −45.1 ± 50.6 PgC ∘ C −1 ) is about 3 times larger than over ocean ( −17.2 ± 5.0 PgC ∘ C −1 ). The strength of both feedbacks is an order of magnitude more uncertain over land than over ocean as has been seen in existing studies. These values and their spread from 11 CMIP6 models have not changed significantly compared to CMIP5 models. The absolute values of feedback parameters are lower for land with models that include a representation of nitrogen cycle. The transient climate response to cumulative emissions (TCRE) from the 11 CMIP6 models considered here is 1.77 ± 0.37 ∘ C EgC −1 and is similar to that found in CMIP5 models (1.63 ± 0.48 ∘ C EgC −1 ) but with somewhat reduced model spread. The expressions for feedback parameters based on the fully and biogeochemically coupled configurations of the 1pctCO2 simulation are simplified when the small temperature change in the biogeochemically coupled simulation is ignored. Decomposition of the terms of these simplified expressions for the feedback parameters is used to gain insight into the reasons for differing responses among ocean and land carbon cycle models.

Journal ArticleDOI
Georges Aad1, Brad Abbott2, Dale Charles Abbott3, A. Abed Abud4  +2954 moreInstitutions (198)
TL;DR: In this paper, the trigger algorithms and selection were optimized to control the rates while retaining a high efficiency for physics analyses at the ATLAS experiment to cope with a fourfold increase of peak LHC luminosity from 2015 to 2018 (Run 2), and a similar increase in the number of interactions per beam-crossing to about 60.
Abstract: Electron and photon triggers covering transverse energies from 5 GeV to several TeV are essential for the ATLAS experiment to record signals for a wide variety of physics: from Standard Model processes to searches for new phenomena in both proton–proton and heavy-ion collisions. To cope with a fourfold increase of peak LHC luminosity from 2015 to 2018 (Run 2), to 2.1×1034cm-2s-1, and a similar increase in the number of interactions per beam-crossing to about 60, trigger algorithms and selections were optimised to control the rates while retaining a high efficiency for physics analyses. For proton–proton collisions, the single-electron trigger efficiency relative to a single-electron offline selection is at least 75% for an offline electron of 31 GeV, and rises to 96% at 60 GeV; the trigger efficiency of a 25 GeV leg of the primary diphoton trigger relative to a tight offline photon selection is more than 96% for an offline photon of 30 GeV. For heavy-ion collisions, the primary electron and photon trigger efficiencies relative to the corresponding standard offline selections are at least 84% and 95%, respectively, at 5 GeV above the corresponding trigger threshold.

Journal ArticleDOI
Georges Aad1, Brad Abbott2, Dale Charles Abbott3, A. Abed Abud4  +2962 moreInstitutions (199)
TL;DR: A search for heavy neutral Higgs bosons is performed using the LHC Run 2 data, corresponding to an integrated luminosity of 139 fb^{-1} of proton-proton collisions at sqrt[s]=13‬TeV recorded with the ATLAS detector.
Abstract: A search for heavy neutral Higgs bosons is performed using the LHC Run 2 data, corresponding to an integrated luminosity of 139 fb^{-1} of proton-proton collisions at sqrt[s]=13 TeV recorded with the ATLAS detector. The search for heavy resonances is performed over the mass range 0.2-2.5 TeV for the τ^{+}τ^{-} decay with at least one τ-lepton decaying into final states with hadrons. The data are in good agreement with the background prediction of the standard model. In the M_{h}^{125} scenario of the minimal supersymmetric standard model, values of tanβ>8 and tanβ>21 are excluded at the 95% confidence level for neutral Higgs boson masses of 1.0 and 1.5 TeV, respectively, where tanβ is the ratio of the vacuum expectation values of the two Higgs doublets.

Journal ArticleDOI
TL;DR: It is shown that the control algorithm developed not only achieves the stable attitude tracking with prescribed behavioral metrics but also guarantees the boundedness of all the closed-loop signals.
Abstract: This brief examines the problem of attitude tracking control with prescribed performance guarantees for a spacecraft subjected to actuator faults and input saturation. To pursue this, the open-loop tracking error dynamics with certain designer-specified performance constraints is first transformed into an equivalent “state-constrained” one, via an error transformation; furthermore, the resulting dynamics is augmented with a dynamic system, which is tactfully constructed to ensure that the control input satisfies the magnitude limits. Subsequently, a robust fault-tolerant controller is developed by using a low-pass filter and an auxiliary system in conjunction with adaptive backstepping design. It is shown that the control algorithm developed not only achieves the stable attitude tracking with prescribed behavioral metrics but also guarantees the boundedness of all the closed-loop signals. Finally, simulation results are given to evaluate the efficacy of the proposed scheme.

Journal ArticleDOI
TL;DR: A novel integral sliding-mode surface is constructed in this article to guarantee the consensus tracking performance in the existence of system nonlinearities as the state trajectories of second-order integrator systems move on the constructed sliding manifold.
Abstract: The event-triggered tracking control problem of second-order multiagent systems in consideration of system nonlinearities is investigated by utilizing the distributed sliding-mode control (SMC) approach. An event-triggered strategy is proposed to decrease the controller sampling frequency and save the network communication resources; the triggering condition is then established for leader-following multiagent systems. In this article, by utilizing the distributed event-based sliding-mode controller, the system state of second-order multiagent systems with system nonlinearities is capable of approaching the integral sliding-mode surface in finite time. A novel integral sliding-mode surface is constructed in this article to guarantee the consensus tracking performance in the existence of system nonlinearities as the state trajectories of second-order integrator systems move on the constructed sliding manifold. By employing the Lyapunov approach, sufficient conditions are deduced to ensure that the consensus tracking performance is obtained for the closed-loop system. Furthermore, it is presented that the triggering scheme can effectively reduce state updates and eliminate the Zeno behavior. A simulation example is provided to testify the validity of our proposed methodology.

Journal ArticleDOI
TL;DR: This article provides a working definition of deepfakes together with an overview of the underlying technology, and classify different deepfake types: photo, audio, video, video (face-swapping, face-morphing, full body puppetry), and audio and video (lip-synching).