scispace - formally typeset
Search or ask a question
Institution

University of Victoria

EducationVictoria, British Columbia, Canada
About: University of Victoria is a education organization based out in Victoria, British Columbia, Canada. It is known for research contribution in the topics: Population & Galaxy. The organization has 14994 authors who have published 41051 publications receiving 1447972 citations. The organization is also known as: Victoria College.


Papers
More filters
Journal ArticleDOI
TL;DR: A holistic view of surface reconstruction is considered, which shows a detailed characterization of the field, highlights similarities between diverse reconstruction techniques and provides directions for future work in surface reconstruction.
Abstract: The area of surface reconstruction has seen substantial progress in the past two decades. The traditional problem addressed by surface reconstruction is to recover the digital representation of a physical shape that has been scanned, where the scanned data contain a wide variety of defects. While much of the earlier work has been focused on reconstructing a piece-wise smooth representation of the original shape, recent work has taken on more specialized priors to address significantly challenging data imperfections, where the reconstruction can take on different representations-not necessarily the explicit geometry. We survey the field of surface reconstruction, and provide a categorization with respect to priors, data imperfections and reconstruction output. By considering a holistic view of surface reconstruction, we show a detailed characterization of the field, highlight similarities between diverse reconstruction techniques and provide directions for future work in surface reconstruction.

405 citations

Journal ArticleDOI
TL;DR: In this paper, the cosmological constraints from 2D weak gravitational lensing by the large-scale structure in the Canada-France-Hawaii Telescope Lensing Survey (CFHTLenS) are presented.
Abstract: We present cosmological constraints from 2D weak gravitational lensing by the large-scale structure in the Canada–France–Hawaii Telescope Lensing Survey (CFHTLenS) which spans 154 deg^2 in five optical bands. Using accurate photometric redshifts and measured shapes for 4.2 million galaxies between redshifts of 0.2 and 1.3, we compute the 2D cosmic shear correlation function over angular scales ranging between 0.8 and 350 arcmin. Using non-linear models of the dark-matter power spectrum, we constrain cosmological parameters by exploring the parameter space with Population Monte Carlo sampling. The best constraints from lensing alone are obtained for the small-scale density-fluctuations amplitude σ_8 scaled with the total matter density Ωm. For a flat Λcold dark matter (ΛCDM) model we obtain σ_8(Ω_m/0.27)0.6 = 0.79 ± 0.03. We combine the CFHTLenS data with 7-year Wilkinson Microwave Anisotropy Probe (WMAP7), baryonic acoustic oscillations (BAO): SDSS-III (BOSS) and a Hubble Space Telescope distance-ladder prior on the Hubble constant to get joint constraints. For a flat ΛCDM model, we find Ω_m = 0.283 ± 0.010 and σ_8 = 0.813 ± 0.014. In the case of a curved wCDM universe, we obtain Ω_m = 0.27 ± 0.03, σ_8 = 0.83 ± 0.04, w0 = −1.10 ± 0.15 and Ω_K = 0.006^(+0.006)_(− 0.004). We calculate the Bayesian evidence to compare flat and curved ΛCDM and dark-energy CDM models. From the combination of all four probes, we find models with curvature to be at moderately disfavoured with respect to the flat case. A simple dark-energy model is indistinguishable from ΛCDM. Our results therefore do not necessitate any deviations from the standard cosmological model.

405 citations

Journal ArticleDOI
TL;DR: African swine fever virus (ASFV) is a large icosahedral DNA virus which replicates predominantly in the cytoplasm of infected cells and a similar mechanism of replication to Poxviruses has been proposed for ASFV.

405 citations

Journal ArticleDOI
TL;DR: In this article, the authors revisited the analysis of a sample of 50 clusters studied as part of the Canadian Cluster Comparison Project and found that the uncertainty in the determination of photometric redshifts is the largest source of systematic error for our mass estimates.
Abstract: Masses of clusters of galaxies from weak gravitational lensing analyses of ever larger samples are increasingly used as the reference to which baryonic scaling relations are compared. In this paper we revisit the analysis of a sample of 50 clusters studied as part of the Canadian Cluster Comparison Project. We examine the key sources of systematic error in cluster masses. We quantify the robustness of our shape measurements and calibrate our algorithm empirically using extensive image simulations. The source redshift distribution is revised using the latest state-of-the-art photometric redshift catalogues that include new deep near-infrared observations. None the less we find that the uncertainty in the determination of photometric redshifts is the largest source of systematic error for our mass estimates. We use our updated masses to determine b, the bias in the hydrostatic mass, for the clusters detected by Planck. Our results suggest 1 − b = 0.76 ± 0.05 (stat) ± 0.06 (syst), which does not resolve the tension with the measurements from the primary cosmic microwave background.

404 citations

Journal ArticleDOI
TL;DR: In this paper, the authors present a set of VR assets for neuropsychological assessment and rehabilitation, and discuss current VR-based research that serves as the basis for these VR assets.
Abstract: Virtual reality (VR) technology offers new opportunities for the development of innovative neuropsychological assessment and rehabilitation tools. VR-based testing and training scenarios that would be difficult, if not impossible, to deliver using conventional neuropsychological methods are now being developed that take advantage of the assets available with VR technology. If empirical studies continue to demonstrate effectiveness, virtual environment applications could provide new options for targeting cognitive and functional impairments due to traumatic brain injury, neurological disorders, and learning disabilities. This article focuses on specifying the assets that are available with VR for neuropsychological applications along with discussion of current VRbased research that serves to illustrate each asset. VR allows for the precise presentation and control of dynamic multi-sensory 3D stimulus environments, as well as providing advanced methods for recording behavioural responses. This serves as the basis for a diverse set of VR assets for neuropsychological approaches that are detailed in this article. We take the position that when combining these assets within the context of functionally relevant, ecologically valid virtual environments, fundamental advancements can emerge in how human cognition and functional behaviour is assessed and rehabilitated.

404 citations


Authors

Showing all 15188 results

NameH-indexPapersCitations
Jie Zhang1784857221720
D. M. Strom1763167194314
Sw. Banerjee1461906124364
Robert J. Glynn14674888387
Manel Esteller14671396429
R. Kowalewski1431815135517
Paul Jackson141137293464
Mingshui Chen1411543125369
Ali Khademhosseini14088776430
Roger Jones138998114061
Tord Ekelof137121291105
L. Köpke13695081787
M. Morii1341664102074
Arnaud Ferrari134139287052
Richard Brenner133110887426
Network Information
Related Institutions (5)
University of British Columbia
209.6K papers, 9.2M citations

94% related

McGill University
162.5K papers, 6.9M citations

94% related

University of Toronto
294.9K papers, 13.5M citations

94% related

University of Alberta
154.8K papers, 5.3M citations

93% related

University of Colorado Boulder
115.1K papers, 5.3M citations

93% related

Performance
Metrics
No. of papers from the Institution in previous years
YearPapers
202379
2022348
20212,108
20202,200
20192,212
20181,926