scispace - formally typeset
Search or ask a question
Institution

University of Vienna

EducationVienna, Austria
About: University of Vienna is a education organization based out in Vienna, Austria. It is known for research contribution in the topics: Population & Context (language use). The organization has 44686 authors who have published 95840 publications receiving 2907492 citations.


Papers
More filters
Journal ArticleDOI
TL;DR: In this paper, entangled trinary quantum systems (qutrits) were used for quantum key distribution and two identical keys were obtained with a qutrit error rate of approximately 10% using an Ekert-type protocol.
Abstract: We produce two identical keys using, for the first time, entangled trinary quantum systems (qutrits) for quantum key distribution The advantage of qutrits over the normally used binary quantum systems is an increased coding density and a higher security margin The qutrits are encoded into the orbital angular momentum of photons, namely Laguerre–Gaussian modes with azimuthal index l + 1, 0 and −1, respectively The orbital angular momentum is controlled with phase holograms In an Ekert-type protocol the violation of a three-dimensional Bell inequality verifies the security of the generated keys A key is obtained with a qutrit error rate of approximately 10%

403 citations

Journal ArticleDOI
TL;DR: Bacterial diversity that is unparalleled in an invertebrate host is shown, with more than 250 000 sponge-derived sequence tags being assigned to 23 bacterial phyla and revealing up to 2996 operational taxonomic units per sponge species.
Abstract: Marine sponges contain complex bacterial communities of considerable ecological and biotechnological importance, with many of these organisms postulated to be specific to sponge hosts. Testing this hypothesis in light of the recent discovery of the rare microbial biosphere, we investigated three Australian sponges by massively parallel 16S rRNA gene tag pyrosequencing. Here we show bacterial diversity that is unparalleled in an invertebrate host, with more than 250 000 sponge-derived sequence tags being assigned to 23 bacterial phyla and revealing up to 2996 operational taxonomic units (95% sequence similarity) per sponge species. Of the 33 previously described ‘sponge-specific’ clusters that were detected in this study, 48% were found exclusively in adults and larvae – implying vertical transmission of these groups. The remaining taxa, including ‘Poribacteria’, were also found at very low abundance among the 135 000 tags retrieved from surrounding seawater. Thus, members of the rare seawater biosphere may serve as seed organisms for widely occurring symbiont populations in sponges and their host association might have evolved much more recently than previously thought.

402 citations

Journal ArticleDOI
TL;DR: In this paper, the trends in adsorption energy, geometry, vibrational properties, and other parameters derived from the electronic structure of the substrate were studied, and the influence of specific changes in their set-up, such as choice of the exchange correlation functional, the choice of pseudopotential, size of the basis set and substrate relaxation, has been carefully evaluated.
Abstract: We have studied the trends in CO adsorption on close-packed metal surfaces: Co, Ni, Cu from the 3d row, Ru, Rh, Pd, Ag from the 4d row and Ir, Pt, Au from the 5d row using density functional theory. In particular, we were concerned with the trends in adsorption energy, geometry, vibrational properties and other parameters derived from the electronic structure of the substrate. The influence of specific changes in our set-up, such as choice of the exchange correlation functional, the choice of pseudopotential, size of the basis set and substrate relaxation, has been carefully evaluated. We found that, while the geometrical and vibrational properties of the adsorbate–substrate complex are calculated with high accuracy, the adsorption energies calculated with the gradient-corrected Perdew–Wang exchange–correlation energies are overestimated. In addition, the calculations tend to favour adsorption sites with higher coordination, resulting in the prediction of the wrong adsorption sites for the Rh, Pt and Cu surfaces (hollow instead of top). The revised Perdew–Burke–Erzernhof functional (RPBE) leads to lower (i.e. more realistic) adsorption energies for transition metals, but to the wrong results for noble metals—for Ag and Au, endothermic adsorption is predicted. The site preference remains the same. We discuss trends in relation to the electronic structure of the substrate across the periodic table, summarizing the state-of-the-art of CO adsorption on close-packed metal surfaces.

402 citations

Journal ArticleDOI
04 Jan 2018-Nature
TL;DR: It is shown, using state-of-the-art datasets, that vegetation currently stores around 450 petagrams of carbon, in the hypothetical absence of land use, which implies that trade-offs exist between conserving carbon stocks on managed land and raising the contribution of biomass to raw material and energy supply for the mitigation of climate change.
Abstract: Carbon stocks in vegetation have a key role in the climate system. However, the magnitude, patterns and uncertainties of carbon stocks and the effect of land use on the stocks remain poorly quantified. Here we show, using state-of-the-art datasets, that vegetation currently stores around 450 petagrams of carbon. In the hypothetical absence of land use, potential vegetation would store around 916 petagrams of carbon, under current climate conditions. This difference highlights the massive effect of land use on biomass stocks. Deforestation and other land-cover changes are responsible for 53-58% of the difference between current and potential biomass stocks. Land management effects (the biomass stock changes induced by land use within the same land cover) contribute 42-47%, but have been underestimated in the literature. Therefore, avoiding deforestation is necessary but not sufficient for mitigation of climate change. Our results imply that trade-offs exist between conserving carbon stocks on managed land and raising the contribution of biomass to raw material and energy supply for the mitigation of climate change. Efforts to raise biomass stocks are currently verifiable only in temperate forests, where their potential is limited. By contrast, large uncertainties hinder verification in the tropical forest, where the largest potential is located, pointing to challenges for the upcoming stocktaking exercises under the Paris agreement.

401 citations

Journal ArticleDOI
TL;DR: In this paper, a time-splitting spectral approximation for the Schrodinger equation in the semiclassical regime is proposed. But the authors consider the case where the Planck constant e is small and require the spatial mesh size h = O(e) and the time step k = o(e).

401 citations


Authors

Showing all 45262 results

NameH-indexPapersCitations
Tomas Hökfelt158103395979
Wolfgang Wagner1562342123391
Hans Lassmann15572479933
Stanley J. Korsmeyer151316113691
Charles B. Nemeroff14997990426
Martin A. Nowak14859194394
Barton F. Haynes14491179014
Yi Yang143245692268
Peter Palese13252657882
Gérald Simonneau13058790006
Peter M. Elias12758149825
Erwin F. Wagner12537559688
Anton Zeilinger12563171013
Wolfgang Waltenberger12585475841
Michael Wagner12435154251
Network Information
Related Institutions (5)
Ludwig Maximilian University of Munich
161.5K papers, 5.7M citations

94% related

Heidelberg University
119.1K papers, 4.6M citations

93% related

University of Zurich
124K papers, 5.3M citations

92% related

University of Amsterdam
140.8K papers, 5.9M citations

92% related

Uppsala University
107.5K papers, 4.2M citations

92% related

Performance
Metrics
No. of papers from the Institution in previous years
YearPapers
20241
2023419
20221,085
20214,482
20204,534
20194,225