scispace - formally typeset
Search or ask a question
Institution

University of Vienna

EducationVienna, Austria
About: University of Vienna is a education organization based out in Vienna, Austria. It is known for research contribution in the topics: Population & Stars. The organization has 44686 authors who have published 95840 publications receiving 2907492 citations.


Papers
More filters
Journal Article
TL;DR: Intravenous injection of the antibody in the course of T-cell-mediated transfer EAE augmented the severity and duration of clinical signs and resulted in the formation of large, confluent demyelinated plaques.
Abstract: In this study the authors have developed a model with which can be studied directly the influence of circulating anti-myelin antibody on the clinical and pathologic course of inflammatory T-cell-mediated experimental allergic encephalomyelitis (EAE) in the rat. EAE was induced by passive transfer of either myelin basic protein (MBP)-activated spleen cells derived from sensitized donors or long-term-cultured MBP-specific T-cell lines. At the onset of the disease, monoclonal antibodies against a myelin/oligodendrocyte glycoprotein (MOG) were injected intravenously. This antigen is exposed on the surface of central nervous system myelin and oligodendrocytes. Intravenous injection of the antibody in the course of T-cell-mediated transfer EAE augmented the severity and duration of clinical signs and resulted in the formation of large, confluent demyelinated plaques.

732 citations

Journal ArticleDOI
TL;DR: A computational search for ADAR editing sites in the human transcriptome is described, using millions of available expressed sequences and indicates the role of editing in controlling dsRNA stability.
Abstract: RNA editing by members of the ADAR (adenosine deaminases acting on RNA) family leads to site-specific conversion of adenosine to inosine (A-to-I) in precursor messenger RNAs. Editing by ADARs is believed to occur in all metazoa, and is essential for mammalian development. Currently, only a limited number of human ADAR substrates are known, whereas indirect evidence suggests a substantial fraction of all pre-mRNAs being affected. Here we describe a computational search for ADAR editing sites in the human transcriptome, using millions of available expressed sequences. We mapped 12,723 A-to-I editing sites in 1,637 different genes, with an estimated accuracy of 95%, raising the number of known editing sites by two orders of magnitude. We experimentally validated our method by verifying the occurrence of editing in 26 novel substrates. A-to-I editing in humans primarily occurs in noncoding regions of the RNA, typically in Alu repeats. Analysis of the large set of editing sites indicates the role of editing in controlling dsRNA stability.

732 citations

Journal ArticleDOI
TL;DR: It is shown that in the Hillery-Buzek-Berthiaume quantum-secret-sharing scheme the secret information is shared in the parity of binary strings formed by the measured outcomes of the participants.
Abstract: In this work, we generalize the quantum-secret-sharing scheme of Hillery, Bu\ifmmode \check{z}\else \v{z}\fi{}ek, and Berthiaume [Phys. Rev. A 59, 1829 (1999)] into arbitrary multiparties. Explicit expressions for the shared secret bit is given. It is shown that in the Hillery-Bu\ifmmode \check{z}\else \v{z}\fi{}ek-Berthiaume quantum-secret-sharing scheme the secret information is shared in the parity of binary strings formed by the measured outcomes of the participants. In addition, we have increased the efficiency of the quantum-secret-sharing scheme by generalizing two techniques from quantum key distribution. The favored-measuring-basis quantum-secret-sharing scheme is developed from the Lo-Chau-Ardehali technique [H. K. Lo, H. F. Chau, and M. Ardehali, e-print quant-ph∕0011056] where all the participants choose their measuring-basis asymmetrically, and the measuring-basis-encrypted quantum-secret-sharing scheme is developed from the Hwang-Koh-Han technique [W. Y. Hwang, I. G. Koh, and Y. D. Han, Phys. Lett. A 244, 489 (1998)] where all participants choose their measuring basis according to a control key. Both schemes are asymptotically $100%$ in efficiency, hence nearly all the Greenberger-Horne-Zeilinger states in a quantum-secret-sharing process are used to generate shared secret information.

731 citations

Journal ArticleDOI
TL;DR: The recent achievement of oxaliplatin for the treatment of colon cancer should not belie the imbalance between a plethora of investigated complexes and a very small number of clinically approved platinum drugs as discussed by the authors.
Abstract: Triggered by the resounding success of cisplatin, the past decades have seen tremendous efforts to produce clinically beneficial analogues. The recent achievement of oxaliplatin for the treatment of colon cancer should, however, not belie the imbalance between a plethora of investigated complexes and a very small number of clinically approved platinum drugs. Strategies opening up new avenues are increasingly being sought using complexes of metals other than platinum such as ruthenium or gallium. Based on the chemical differences between these metals, the spectrum of molecular mechanisms of action and potential indications can be broadened substantially. Other approaches focus on complexes with tumour-targeting properties, thereby maximizing the impact on cancer cells and minimizing the problem of adverse side effects, and complexes with biologically active ligands.

729 citations

Journal ArticleDOI
TL;DR: In this paper, it was shown that the first approximation leads to excellent agreement with experiment, whereas an update of the eigenvalues in $G$ and $W$ gives too large band gaps for virtually all materials.
Abstract: We present $GW$ calculations for small and large gap systems comprising typical semiconductors (Si, SiC, GaAs, GaN, ZnO, ZnS, CdS, and AlP), small gap semiconductors (PbS, PbSe, and PbTe), insulators (C, BN, MgO, and LiF), and noble gas solids (Ar and Ne). It is shown that the ${G}_{0}{W}_{0}$ approximation always yields too small band gaps. To improve agreement with experiment, the eigenvalues in the Green's function $G$ $(G{W}_{0})$ and in the Green's function and the dielectric matrix $(GW)$ are updated until self-consistency is reached. The first approximation leads to excellent agreement with experiment, whereas an update of the eigenvalues in $G$ and $W$ gives too large band gaps for virtually all materials. From a pragmatic point of view, the $G{W}_{0}$ approximation thus seems to be an accurate and still reasonably fast method for predicting quasiparticle energies in simple $sp$-bonded systems. We furthermore observe that the band gaps in materials with shallow $d$ states (GaAs, GaN, and ZnO) are systematically underestimated. We propose that an inaccurate description of the static dielectric properties of these materials is responsible for the underestimation of the band gaps in $G{W}_{0}$, which is itself a result of the incomplete cancellation of the Hartree self-energy within the $d$ shell by local or gradient corrected density functionals.

728 citations


Authors

Showing all 45262 results

NameH-indexPapersCitations
Tomas Hökfelt158103395979
Wolfgang Wagner1562342123391
Hans Lassmann15572479933
Stanley J. Korsmeyer151316113691
Charles B. Nemeroff14997990426
Martin A. Nowak14859194394
Barton F. Haynes14491179014
Yi Yang143245692268
Peter Palese13252657882
Gérald Simonneau13058790006
Peter M. Elias12758149825
Erwin F. Wagner12537559688
Anton Zeilinger12563171013
Wolfgang Waltenberger12585475841
Michael Wagner12435154251
Network Information
Related Institutions (5)
Ludwig Maximilian University of Munich
161.5K papers, 5.7M citations

94% related

Heidelberg University
119.1K papers, 4.6M citations

93% related

University of Zurich
124K papers, 5.3M citations

92% related

University of Amsterdam
140.8K papers, 5.9M citations

92% related

Uppsala University
107.5K papers, 4.2M citations

92% related

Performance
Metrics
No. of papers from the Institution in previous years
YearPapers
20241
2023419
20221,085
20214,479
20204,533
20194,225