scispace - formally typeset
Search or ask a question
Institution

University of Virginia

EducationCharlottesville, Virginia, United States
About: University of Virginia is a education organization based out in Charlottesville, Virginia, United States. It is known for research contribution in the topics: Population & Poison control. The organization has 52543 authors who have published 113268 publications receiving 5220506 citations. The organization is also known as: U of V & UVa.


Papers
More filters
Journal ArticleDOI
TL;DR: In this paper, the kinetics and microscopic mechanisms of laser melting and disintegration of thin Ni and Au films irradiated by a short, from 200 fs to 150 ps, laser pulse are investigated in a coupled atomistic-continuum computational model.
Abstract: The kinetics and microscopic mechanisms of laser melting and disintegration of thin Ni and Au films irradiated by a short, from 200 fs to 150 ps, laser pulse are investigated in a coupled atomistic-continuum computational model. The model provides a detailed atomic-level description of fast nonequilibrium processes of laser melting and film disintegration and, at the same time, ensures an adequate description of the laser light absorption by the conduction band electrons, the energy transfer to the lattice due to the electron-phonon coupling, and the fast electron heat conduction in metals. The interplay of two competing processes, the propagation of the liquid-crystal interfaces (melting fronts) from the external surfaces of the film and homogeneous nucleation and growth of liquid regions inside the crystal, is found to be responsible for melting of metal films irradiated by laser pulses at fluences close to the melting threshold. The relative contributions of the homogeneous and heterogeneous melting mechanisms are defined by the laser fluence, pulse duration, and the strength of the electron-phonon coupling. At high laser fluences, significantly exceeding the threshold for the melting onset, a collapse of the crystal structure overheated above the limit of crystal stability takes place simultaneously in the whole overheated region within \ensuremath{\sim}2 ps, skipping the intermediate liquid-crystal coexistence stage. Under conditions of the inertial stress confinement, realized in the case of short $\ensuremath{\tau}l~10\mathrm{ps}$ laser pulses and strong electron-phonon coupling (Ni films), the dynamics of the relaxation of the laser-induced pressure has a profound effect on the temperature distribution in the irradiated films as well as on both homogeneous and heterogeneous melting processes. Anisotropic lattice distortions and stress gradients associated with the relaxation of the laser-induced pressure destabilize the crystal lattice, reduce the overheating required for the initiation of homogeneous melting down to $T\ensuremath{\approx}{1.05T}_{m},$ and expand the range of pulse durations for which homogeneous melting is observed in 50 nm Ni films up to \ensuremath{\sim}150 ps. High tensile stresses generated in the middle of an irradiated film can also lead to the mechanical disintegration of the film.

634 citations

Journal ArticleDOI
Klaus Ley1
TL;DR: Improvements in the efficiency, availability, specificity and pharmacokinetics of selectin inhibitors, and specialized application routes and schedules, hold promise for therapeutic indications.

634 citations

Journal ArticleDOI
TL;DR: It is suggested that, in addition to its role in microtubule-dependent cell motility, HDAC6 influences actin-dependentCell motility by altering the acetylation status of cortactin, which, in turn, changes the F-actin binding activity of Cortactin.

633 citations

Journal ArticleDOI
TL;DR: In this paper, the authors present a survey of the Spanish participation groups in the International Journal of Astronautic and Astronautical Engineering (IoAIAE 2014), which includes the Spanish Ministry of Economy and Competitiveness (MINECO), the Hungarian Academy of Sciences, and the National Science Foundation (NSF).
Abstract: NSF [AST11-09718, AST-907873]; Alfred P. Sloan Foundation; National Science Foundation; U.S. Department of Energy Office of Science; University of Arizona; Brazilian Participation Group; Brookhaven National Laboratory; University of Cambridge; Carnegie Mellon University; University of Florida; French Participation Group; German Participation Group; Harvard University; Instituto de Astrofisica de Canarias; Michigan State/Notre Dame/JINA Participation Group; Johns Hopkins University; Lawrence Berkeley National Laboratory; Max Planck Institute for Astrophysics; Max Planck Institute for Extraterrestrial Physics; New Mexico State University; New York University; Ohio State University; Pennsylvania State University; University of Portsmouth; Princeton University; Spanish Participation Group; University of Tokyo; University of Utah; Vanderbilt University; University of Virginia; University of Washington; Yale University; Spanish Ministry of Economy and Competitiveness (MINECO) [AYA2014-56359-P]; Janos Bolyai Research Scholarship of the Hungarian Academy of Sciences; Spanish Ministry of Economy and Competitiveness [AYA-2011-27754, AYA2014-58082-P]

633 citations

Journal ArticleDOI
TL;DR: In this article, the authors extend the theory of afterglows in winds, considering strong cooling phases, the transition to nonrelativistic motion, jets, and prompt reverse-shock emission, and find that the optical prompt emission in the wind case could have a comparable magnitude but would die off faster.
Abstract: Beginning with the γ-ray bursts GRB 970228 and GRB 970508, a standard model for the interpretation of gamma-ray burst (GRB) afterglows emerged involving synchrotron emission from a constant-energy blast wave expanding into a constant-density, "interstellar" medium However, a massive star origin for GRBs implies a stellar wind environment, probably a Wolf-Rayet star, and we have previously suggested wind interaction models for the afterglows of GRBs 980326, 980519, and 980425/SN 1998bw Here, we extend the theory of afterglows in winds, considering strong cooling phases, the transition to nonrelativistic motion, jets, and prompt reverse-shock emission We find that, compared to the interstellar case, the optical prompt emission in the wind case could have a comparable magnitude but would die off faster We examine the afterglows of other well-observed GRBs in the context of wind interaction models and find that GRBs 970228 and 970508 are likely wind interactors The revision in the nonthermal afterglow emission from GRB 970228 caused by the recognition of late supernova emission favors wind interaction The radio evolution of GRB 970508 provides especially strong evidence for wind interaction For GRB 970508, the observations suggest a density that is compatible with that expected in a Wolf-Rayet star wind Finally, observations of the afterglow evolution of GRBs 990123 and 990510 and the prompt optical emission from GRB 990123 favor interstellar interaction models, which would suggest compact star merger progenitors for these objects

632 citations


Authors

Showing all 53083 results

NameH-indexPapersCitations
Joan Massagué189408149951
Michael Rutter188676151592
Gordon B. Mills1871273186451
Ralph Weissleder1841160142508
Gonçalo R. Abecasis179595230323
Jie Zhang1784857221720
John R. Yates1771036129029
John A. Rogers1771341127390
Bradley Cox1692150156200
Mika Kivimäki1661515141468
Hongfang Liu1662356156290
Carl W. Cotman165809105323
Ralph A. DeFronzo160759132993
Elio Riboli1581136110499
Dan R. Littman157426107164
Network Information
Related Institutions (5)
Columbia University
224K papers, 12.8M citations

96% related

University of Pennsylvania
257.6K papers, 14.1M citations

96% related

University of Michigan
342.3K papers, 17.6M citations

96% related

University of Washington
305.5K papers, 17.7M citations

96% related

Stanford University
320.3K papers, 21.8M citations

96% related

Performance
Metrics
No. of papers from the Institution in previous years
YearPapers
2023189
2022783
20215,566
20205,600
20195,001
20184,586