scispace - formally typeset
Search or ask a question
Institution

University of Virginia

EducationCharlottesville, Virginia, United States
About: University of Virginia is a education organization based out in Charlottesville, Virginia, United States. It is known for research contribution in the topics: Population & Poison control. The organization has 52543 authors who have published 113268 publications receiving 5220506 citations. The organization is also known as: U of V & UVa.


Papers
More filters
Journal ArticleDOI
TL;DR: It is found that policies focused solely on increasing teachers' education will not suffice for improving classroom quality or maximizing children's academic gains, and raising the effectiveness of early childhood education likely will require a broad range of professional development activities and supports targeted toward teachers' interactions with children.
Abstract: In an effort to provide high-quality preschool education, policymakers are increasingly requiring public preschool teachers to have at least a Bachelor's degree, preferably in early childhood education. Seven major studies of early care and education were used to predict classroom quality and children's academic outcomes from the educational attainment and major of teachers of 4-year-olds. The findings indicate largely null or contradictory associations, indicating that policies focused solely on increasing teachers' education will not suffice for improving classroom quality or maximizing children's academic gains. Instead, raising the effectiveness of early childhood education likely will require a broad range of professional development activities and supports targeted toward teachers' interactions with children.

892 citations

Journal ArticleDOI
TL;DR: This review focuses on recent discoveries in the field, with an emphasis on the carriers and cofactors involved in transport and on possible mechanisms for movement through the nuclear pores.
Abstract: A defining characteristic of eukaryotic cells is the possession of a nuclear envelope. Transport of macromolecules between the nuclear and cytoplasmic compartments occurs through nuclear pore complexes that span the double membrane of this envelope. The molecular basis for transport has been revealed only within the last few years. The transport mechanism lacks motors and pumps and instead operates by a process of facilitated diffusion of soluble carrier proteins, in which vectoriality is provided by compartment-specific assembly and disassembly of cargo-carrier complexes. The carriers recognize localization signals on the cargo and can bind to pore proteins. They also bind a small GTPase, Ran, whose GTP-bound form is predominantly nuclear. Ran-GTP dissociates import carriers from their cargo and promotes the assembly of export carriers with cargo. The ongoing discovery of numerous carriers, Ran-independent transport mechanisms, and cofactors highlights the complexity of the nuclear transport process. Multiple regulatory mechanisms are also being identified that control cargo-carrier interactions. Circadian rhythms, cell cycle, transcription, RNA processing, and signal transduction are all regulated at the level of nucleocytoplasmic transport. This review focuses on recent discoveries in the field, with an emphasis on the carriers and cofactors involved in transport and on possible mechanisms for movement through the nuclear pores.

889 citations

Journal ArticleDOI
TL;DR: The present study re‐examines, with autoradiographic methods, the pattern of termination of fibers originating from various medio‐lateral divisions of the entorhinal cortex on dentate granule cells and on hippocampa pyramidal cells of the rat.
Abstract: The present study re-examines, with autoradiographic methods, the pattern of termination of fibers originating from various medio-lateral divisions of the entorhinal cortex on dentate granule cells and on hippocampal pyramidal cells of the rat. Entorhinal fibers were found to distribute in a proximo-distal gradient along the dendrites of dentate granule cells, with afferents from the medial entorhinal area terminating in the innermost portion of the entorhinal synaptic field, afferents from the lateral entorhinal area terminating in the most superficial portions of the entorhinal synaptic field, and intermediate medio-lateral locations in the entorhinal area terminating in intermediate locations in the entorhinal synaptic zone. A similar graded pattern of termination of medial and lateral entorhinal fibers was apparent in the very slight crossed projection of the entorhinal area to the contralateral dentate gyrus. In addition, a comparable gradient in the pattern of termination of entorhinal fibers was evident in the entorhinal projection field in the distal regions of the pyramidal cells of regio inferior of the hippocampus proper. Entorhinal projections to regio superior were, however, organized in quite a different fashion. In this zone, there was no evidence of a proximo-distal gradient in the patterns of termination of medial and lateral entorhinal areas along the dendrites of regio superior pyramidal cells. Rather, the medio-lateral organization was in a longitudinal dimension, with medial entorhinal afferents terminating in the portions of regio superior near the CA1-CA2 transition, and lateral entorhinal afferents terminating furthest from the CA1-CA2 transition, immediately adjacent to the CA1-subicular transition, and in the molecular layer of the subiculum proper. A comparable longitudinal organization of entorhinal projections to regio superior was also evident in the zones of termination of the crossed temporo-ammonic tract, contralateral to the injection. These results demonstrate a heretofore unrecognized complexity in the patterns of projection of the entorhinal area to the hippocampal formation, and illustrate that the entorhinal cortex cannot be divided into only two discrete divisions on the basis of the pattern of projection.

889 citations

Journal ArticleDOI
04 Aug 2000-Cell
TL;DR: An enzyme system that regulates chromosome dynamics and controls histone phosphorylation that is conserved among diverse eukaryotes is revealed.

888 citations

Journal ArticleDOI
29 Apr 1994-Science
TL;DR: Melanoma-specific CTLs had an exceptionally high affinity for this nine-residue peptide, which reconstituted an epitope for CTL lines from each of five different melanoma patients tested.
Abstract: Of several thousand peptides presented by the major histocompatibility molecule HLA-A2.1, at least nine are recognized by melanoma-specific cytotoxic T lymphocytes (CTLs). Tandem mass spectrometry was used to identify and to sequence one of these peptide epitopes. Melanoma-specific CTLs had an exceptionally high affinity for this nine-residue peptide, which reconstituted an epitope for CTL lines from each of five different melanoma patients tested. Recognition by multiple CTL lines suggests that this may be a promising candidate for use in peptide-based melanoma vaccines.

887 citations


Authors

Showing all 53083 results

NameH-indexPapersCitations
Joan Massagué189408149951
Michael Rutter188676151592
Gordon B. Mills1871273186451
Ralph Weissleder1841160142508
Gonçalo R. Abecasis179595230323
Jie Zhang1784857221720
John R. Yates1771036129029
John A. Rogers1771341127390
Bradley Cox1692150156200
Mika Kivimäki1661515141468
Hongfang Liu1662356156290
Carl W. Cotman165809105323
Ralph A. DeFronzo160759132993
Elio Riboli1581136110499
Dan R. Littman157426107164
Network Information
Related Institutions (5)
Columbia University
224K papers, 12.8M citations

96% related

University of Pennsylvania
257.6K papers, 14.1M citations

96% related

University of Michigan
342.3K papers, 17.6M citations

96% related

University of Washington
305.5K papers, 17.7M citations

96% related

Stanford University
320.3K papers, 21.8M citations

96% related

Performance
Metrics
No. of papers from the Institution in previous years
YearPapers
2023189
2022783
20215,566
20205,600
20195,001
20184,586