scispace - formally typeset
Search or ask a question

Showing papers by "University of Warsaw published in 2013"


Journal ArticleDOI
07 Mar 2013-Nature
TL;DR: Determinations of the distances to eight long-period, late-type eclipsing systems in the Large Magellanic Cloud, composed of cool, giant stars, provide a firm base for a 3-per-cent determination of the Hubble constant.
Abstract: Observations of eight long-period, late-type eclipsing-binary systems composed of cool, giant stars are used to determine a distance to the Large Magellanic Cloud accurate to 2.2 per cent, providing a base for a determination of the Hubble constant to an accuracy of 3 per cent. The physical properties of stars in eclipsing binary systems can be accurately determined thanks to the intimate interactions between the two bodies, and by monitoring the fluctuating light from such systems it is possible to obtain accurate extragalactic distance measurement. This technique has now been used to determine the most accurate distance estimate yet for the Large Magellanic Cloud (LMC), our nearest-neighbour galaxy. The data from eight long-period, late-type eclipsing systems particularly suitable for this calibration technique suggest that the LMC is around 49.97 kiloparsecs from us, to an accuracy of 2.2%. The distance to the LMC is a key element in determining the Hubble constant, an important measure of the rate of expansion of the Universe. In the era of precision cosmology, it is essential to determine the Hubble constant to an accuracy of three per cent or better1,2. At present, its uncertainty is dominated by the uncertainty in the distance to the Large Magellanic Cloud (LMC), which, being our second-closest galaxy, serves as the best anchor point for the cosmic distance scale2,3. Observations of eclipsing binaries offer a unique opportunity to measure stellar parameters and distances precisely and accurately4,5. The eclipsing-binary method was previously applied to the LMC6,7, but the accuracy of the distance results was lessened by the need to model the bright, early-type systems used in those studies. Here we report determinations of the distances to eight long-period, late-type eclipsing systems in the LMC, composed of cool, giant stars. For these systems, we can accurately measure both the linear and the angular sizes of their components and avoid the most important problems related to the hot, early-type systems. The LMC distance that we derive from these systems (49.97 ± 0.19 (statistical) ± 1.11 (systematic) kiloparsecs) is accurate to 2.2 per cent and provides a firm base for a 3-per-cent determination of the Hubble constant, with prospects for improvement to 2 per cent in the future.

757 citations


Journal ArticleDOI
B. S. Acharya1, Marcos Daniel Actis2, T. Aghajani3, G. Agnetta4  +979 moreInstitutions (122)
TL;DR: The Cherenkov Telescope Array (CTA) as discussed by the authors is a very high-energy (VHE) gamma ray observatory with an international collaboration with more than 1000 members from 27 countries in Europe, Asia, Africa and North and South America.

701 citations


Journal ArticleDOI
S. Schael1, R. Barate2, R. Brunelière2, D. Buskulic2  +1672 moreInstitutions (143)
TL;DR: In this paper, the results of the four LEP experiments were combined to determine fundamental properties of the W boson and the electroweak theory, including the branching fraction of W and the trilinear gauge-boson self-couplings.

684 citations


Journal ArticleDOI
TL;DR: In this article, a detailed description of the analysis used by the CMS Collaboration in the search for the standard model Higgs boson in pp collisions at the LHC, which led to the observation of a new boson.
Abstract: A detailed description is reported of the analysis used by the CMS Collaboration in the search for the standard model Higgs boson in pp collisions at the LHC, which led to the observation of a new boson. The data sample corresponds to integrated luminosities up to 5.1 inverse femtobarns at sqrt(s) = 7 TeV, and up to 5.3 inverse femtobarns at sqrt(s) = 8 TeV. The results for five Higgs boson decay modes gamma gamma, ZZ, WW, tau tau, and bb, which show a combined local significance of 5 standard deviations near 125 GeV, are reviewed. A fit to the invariant mass of the two high resolution channels, gamma gamma and ZZ to 4 ell, gives a mass estimate of 125.3 +/- 0.4 (stat) +/- 0.5 (syst) GeV. The measurements are interpreted in the context of the standard model Lagrangian for the scalar Higgs field interacting with fermions and vector bosons. The measured values of the corresponding couplings are compared to the standard model predictions. The hypothesis of custodial symmetry is tested through the measurement of the ratio of the couplings to the W and Z bosons. All the results are consistent, within their uncertainties, with the expectations for a standard model Higgs boson.

643 citations


Journal ArticleDOI
TL;DR: In this paper, two-particle angular correlations for charged particles emitted in pPb collisions at a nucleon-nucleon center-of-mass energy of 5.02 TeV are presented.

575 citations


Journal ArticleDOI
TL;DR: A snapshot of NTM species distribution demonstrates that the species distribution among NTM isolates from pulmonary specimens in the year 2008 differed by continent and differed by country within these continents.
Abstract: A significant knowledge gap exists concerning the geographical distribution of nontuberculous mycobacteria (NTM) isolation worldwide. To provide a snapshot of NTM species distribution, global partners in the NTM-Network European Trials Group (NET) framework (www.ntm-net.org), a branch of the Tuberculosis Network European Trials Group (TB-NET), provided identification results of the total number of patients in 2008 in whom NTM were isolated from pulmonary samples. From these data, we visualised the relative distribution of the different NTM found per continent and per country. We received species identification data for 20 182 patients, from 62 laboratories in 30 countries across six continents. 91 different NTM species were isolated. Mycobacterium avium complex (MAC) bacteria predominated in most countries, followed by M. gordonae and M. xenopi. Important differences in geographical distribution of MAC species as well as M. xenopi, M. kansasii and rapid-growing mycobacteria were observed. This snapshot demonstrates that the species distribution among NTM isolates from pulmonary specimens in the year 2008 differed by continent and differed by country within these continents. These differences in species distribution may partly determine the frequency and manifestations of pulmonary NTM disease in each geographical location.

569 citations


Journal ArticleDOI
TL;DR: In this article, the authors combine VI photometry from OGLE-III with VISTA Variables in The Via Lactea survey and Two Micron All Sky Survey measurements of E(J? Ks ) to resolve the longstanding problem of the non-standard optical extinction toward the Galactic bulge.
Abstract: We combine VI photometry from OGLE-III with VISTA Variables in The Via Lactea survey and Two Micron All Sky Survey measurements of E(J ? Ks ) to resolve the longstanding problem of the non-standard optical extinction toward the Galactic bulge. We show that the extinction is well fit by the relation AI = 0.7465 ? E(V ? I) + 1.3700 ? E(J ? Ks ), or, equivalently, AI = 1.217 ? E(V ? I)(1 + 1.126 ? (E(J ? Ks )/E(V ? I) ? 0.3433)). The optical and near-IR reddening law toward the inner Galaxy approximately follows an RV 2.5 extinction curve with a dispersion , consistent with extragalactic investigations of the hosts of Type Ia SNe. Differential reddening is shown to be significant on scales as small as our mean field size of 6'. The intrinsic luminosity parameters of the Galactic bulge red clump (RC) are derived to be . Our measurements of the RC brightness, brightness dispersion, and number counts allow us to estimate several Galactic bulge structural parameters. We estimate a distance to the Galactic center of 8.20?kpc. We measure an upper bound on the tilt ? 40? between the bulge's major axis and the Sun-Galactic center line of sight, though our brightness peaks are consistent with predictions of an N-body model oriented at ? 25?. The number of RC stars suggests a total stellar mass for the Galactic bulge of ~2.3 ? 1010 M ? if one assumes a canonical Salpeter initial mass function (IMF), or ~1.6 ? 1010 M ? if one assumes a bottom-light Zoccali?IMF.

540 citations


Journal ArticleDOI
TL;DR: It is shown that calcified dental plaque on ancient teeth preserves a detailed genetic record throughout this period of transition between Neolithic and medieval times, after which (the now ubiquitous) cariogenic bacteria became dominant, apparently during the Industrial Revolution.
Abstract: The importance of commensal microbes for human health is increasingly recognized, yet the impacts of evolutionary changes in human diet and culture on commensal microbiota remain almost unknown. Two of the greatest dietary shifts in human evolution involved the adoption of carbohydrate-rich Neolithic (farming) diets (beginning ∼10,000 years before the present) and the more recent advent of industrially processed flour and sugar (in ∼1850). Here, we show that calcified dental plaque (dental calculus) on ancient teeth preserves a detailed genetic record throughout this period. Data from 34 early European skeletons indicate that the transition from hunter-gatherer to farming shifted the oral microbial community to a disease-associated configuration. The composition of oral microbiota remained unexpectedly constant between Neolithic and medieval times, after which (the now ubiquitous) cariogenic bacteria became dominant, apparently during the Industrial Revolution. Modern oral microbiotic ecosystems are markedly less diverse than historic populations, which might be contributing to chronic oral (and other) disease in postindustrial lifestyles.

504 citations


Journal ArticleDOI
TL;DR: In this paper, a detailed elemental abundance analysis of 32 dwarfs and subgiant stars in the Galactic bulge is presented, based on high-resolution spectra obtained during gravitational microlensing events.
Abstract: Based on high-resolution spectra obtained during gravitational microlensing events we present a detailed elemental abundance analysis of 32 dwarf and subgiant stars in the Galactic bulge. Combined with the sample of 26 stars from the previous papers in this series, we now have 58 microlensed bulge dwarfs and subgiants that have been homogeneously analysed. The main characteristics of the sample and the findings that can be drawn are: (i) the metallicity distribution (MDF) is wide and spans all metallicities between [Fe/H] = −1.9 to +0.6; (ii) the dip in the MDF around solar metallicity that was apparent in our previous analysis of a smaller sample (26 microlensed stars) is no longer evident; instead it has a complex structure and indications of multiple components are starting to emerge. A tentative interpretation is that there could be different stellar populations at interplay, each with a different scale height: the thin disk, the thick disk, and a bar population; (iii) the stars with [Fe/H] ≲ −0.1 are old with ages between 10 and 12 Gyr; (iv) the metal-rich stars with [Fe/H] ≳ −0.1 show a wide variety of ages, ranging from 2 to 12 Gyr with a distribution that has a dominant peak around 4−5 Gyr and a tail towards higher ages; (v) there are indications in the [α/Fe]−[Fe/H] abundance trends that the “knee” occurs around [Fe/H] = −0.3 to −0.2, which is a slightly higher metallicity as compared to the “knee” for the local thick disk. This suggests that the chemical enrichment of the metal-poor bulge has been somewhat faster than what is observed for the local thick disk. The results from the microlensed bulge dwarf stars in combination with other findings in the literature, in particular the evidence that the bulge has cylindrical rotation, indicate that the Milky Way could be an almost pure disk galaxy. The bulge would then just be a conglomerate of the other Galactic stellar populations (thin disk, thick disk, halo, and ...?), residing together in the central parts of the Galaxy, influenced by the Galactic bar.

470 citations


Journal ArticleDOI
TL;DR: In this paper, measurements of two-and four-particle angular correlations for charged particles emitted in pPb collisions are presented over a wide range in pseudorapidity and full azimuth.

423 citations


Journal ArticleDOI
TL;DR: The genomic landscape of sensitivity to replication stress in human cells was characterized, and >2,000 nonuniformly distributed aphidicolin-sensitive regions (ASRs) overrepresented in genes and enriched in satellite repeats were identified.
Abstract: We present a genome-wide method to map DNA double-strand breaks (DSBs) at nucleotide resolution by direct in situ breaks labeling, enrichment on streptavidin, and next-generation sequencing (BLESS). We comprehensively validated and tested BLESS using different human and mouse cells, DSBs-inducing agents, and sequencing platforms. BLESS was able to detect telomere ends, Sce endonuclease-induced DSBs, and complex genome-wide DSBs landscapes. As a proof of principle, we characterized the genomic landscape of sensitivity to replication stress in human cells, and identified over two thousand non-uniformly distributed aphidicolin-sensitive regions (ASRs) overrepresented in genes and enriched in satellite repeats. ASRs were also enriched in regions rearranged in human cancers, with many cancer-associated genes exhibiting high sensitivity to replication stress. Our method is suitable for genome-wide mapping of DSBs in various cells and experimental conditions with a specificity and resolution unachievable by current techniques.

Journal ArticleDOI
TL;DR: In this paper, the authors presented the merger event rates of double compact objects as a function of cosmological redshift and provided the results for four cases, each one investigating a different important evolution parameter of binary stars.
Abstract: The development of advanced gravitational wave (GW) observatories, such as Advanced LIGO and Advanced Virgo, provides impetus to refine theoretical predictions for what these instruments might detect. In particular, with the range increasing by an order of magnitude, the search for GW sources is extending beyond the local universe and out to cosmological distances. Double compact objects (neutron star-neutron star (NS-NS), black hole-neutron star (BH-NS), and black hole-black hole (BH-BH) systems) are considered to be the most promising GW sources. In addition, NS-NS and/or BH-NS systems are thought to be the progenitors of gamma-ray bursts and may also be associated with kilonovae. In this paper, we present the merger event rates of these objects as a function of cosmological redshift. We provide the results for four cases, each one investigating a different important evolution parameter of binary stars. Each case is also presented for two metallicity evolution scenarios. We find that (1) in most cases NS-NS systems dominate the merger rates in the local universe, while BH-BH mergers dominate at high redshift, (2) BH-NS mergers are less frequent than other sources per unit volume, for all time, and (3) natal kicks may alter the observable properties of populations in a significant way, allowing the underlying models of binary evolution and compact object formation to be easily distinguished. This is the second paper in a series of three. The third paper will focus on calculating the detection rates of mergers by GW telescopes.

Book
04 Apr 2013
TL;DR: The Curry-Howard isomorphism as discussed by the authors is a type-free lambda-calculus, which is a variant of the Lambda-cube, and it can be expressed as follows:
Abstract: Preface Outline Acknowledgements 1. Typefree lambda-calculus 2. Intuitionistic logic 3. Simply typed lambdacalculus 4. The Curry-Howard isomorphism 5. Proofs as combinators 6. Classical logic and control operators 7. Sequent calculus 8. Firstorder logic 9. Firstorder arithmetic 10. Godel's system T 11. Secondorder logic and polymorphism 12. Secondorder arithmetic 13. Dependent types 14. Pure type systems and the lambda-cube 15. Solutions and hints to selected exercises 16. Solutions for chapter 6 Appendix A Mathematical Background Appendix B Solutions to Selected Exercises Bibliography Index

Journal ArticleDOI
TL;DR: The present data are consistent with the pure scalar hypothesis, while disfavoring the pure pseudoscalar hypothesis.
Abstract: A study is presented of the mass and spin-parity of the new boson recently observed at the LHC at a mass near 125 GeV. An integrated luminosity of 17.3 fb^(-1), collected by the CMS experiment in proton-proton collisions at center-of-mass energies of 7 and 8 TeV, is used. The measured mass in the ZZ channel, where both Z bosons decay to e or μ pairs, is 126.2±0.6(stat)±0.2(syst) GeV. The angular distributions of the lepton pairs in this channel are sensitive to the spin-parity of the boson. Under the assumption of spin 0, the present data are consistent with the pure scalar hypothesis, while disfavoring the pure pseudoscalar hypothesis.

Journal ArticleDOI
TL;DR: This review highlights recent advances in the development of electrochemical sensors for selective sensing of one of the most important neurotransmitters—dopamine.
Abstract: Since the early 70s electrochemistry has been used as a powerful analytical technique for monitoring electroactive species in living organisms. In particular, after extremely rapid evolution of new micro and nanotechnology it has been established as an invaluable technique ranging from experiments in vivo to measurement of exocytosis during communication between cells under in vitro conditions. This review highlights recent advances in the development of electrochemical sensors for selective sensing of one of the most important neurotransmitters—dopamine. Dopamine is an electroactive catecholamine neurotransmitter, abundant in the mammalian central nervous system, affecting both cognitive and behavioral functions of living organisms. We have not attempted to cover a large time-span nor to be comprehensive in presenting the vast literature devoted to electrochemical dopamine sensing. Instead, we have focused on the last five years, describing recent progress as well as showing some problems and directions for future development.

Journal ArticleDOI
Peter A. R. Ade1, Nabila Aghanim2, Monique Arnaud, M. Ashdown3  +258 moreInstitutions (62)
TL;DR: In this paper, the authors used the Sunyaev-Zeldovich (SZ) and pressure profiles of 62 nearby massive clusters detected at high significance in the 14-month nominal survey.
Abstract: Taking advantage of the all-sky coverage and broad frequency range of the Planck satellite, we study the Sunyaev-Zeldovich (SZ) and pressure profiles of 62 nearby massive clusters detected at high significance in the 14-month nominal survey. Careful reconstruction of the SZ signal indicates that most clusters are individually detected at least out to R500. By stacking the radial profiles, we have statistically detected the radial SZ signal out to 3R500, i.e., at a density contrast of about 50-100, though the dispersion about the mean profile dominates the statistical errors across the whole radial range. Our measurement is fully consistent with previous Planck results on integrated SZ fluxes, further strengthening the agreement between SZ and X-ray measurements inside R500. Correcting for the effects of the Planck beam, we have calculated the corresponding pressure profiles. This new constraint from SZ measurements is consistent with the X-ray constraints from xmm in the region in which the profiles overlap (i.e., [0.1-1] R500), and is in fairly good agreement with theoretical predictions within the expected dispersion. At larger radii the average pressure profile is shallower than the predictions. Combining the SZ and X-ray observed profiles into a joint fit to a generalised pressure profile gives best-fit parameters [P0, c500, gamma, alpha, beta] = [6.41, 1.81, 0.31, 1.33, 4.13]. Using a reasonable hypothesis for the gas temperature in the cluster outskirts we reconstruct from our stacked pressure profile the gas mass fraction profile out to 3R500. Within the temperature driven uncertainties, our Planck constraints are compatible with the cosmic baryon fraction and expected gas fraction in halos.

Journal ArticleDOI
P. Adamson1, I. Anghel2, I. Anghel3, C. Backhouse4, G.D. Barr4, M. Bishai5, Andrew Blake6, G. J. Bock1, D. Bogert1, S. V. Cao7, C. M. Castromonte8, S. Childress1, Joao A B Coelho9, Joao A B Coelho10, L. Corwin11, Daniel P Cronin-Hennessy, J. K. De Jong4, A. V. Devan12, N. E. Devenish13, M. V. Diwan5, Carlos Escobar9, J. J. Evans, E. Falk13, G. J. Feldman14, M. V. Frohne15, H. R. Gallagher10, R. A. Gomes8, Maury Goodman3, P. Gouffon16, N. Graf17, R. Gran, K. Grzelak18, Alec Habig, S. R. Hahn1, J. Hartnell13, R. Hatcher1, A. Himmel19, A. Holin20, J. Hylen1, G. M. Irwin21, Z. Isvan5, Z. Isvan22, C. James1, D. A. Jensen1, T. Kafka10, S. M. S. Kasahara23, G. Koizumi1, M. Kordosky12, A. E. Kreymer1, Karol Lang7, P. J. Litchfield, P. Lucas, W. A. Mann, Marvin L Marshak, M. Mathis, N. Mayer, A. M. McGowan, M. M. Medeiros, R. Mehdiyev, J. R. Meier, M. D. Messier, D. G. Michael, W. H. Miller, S. R. Mishra, S. Moed Sher, C. D. Moore, L. Mualem, J. A. Musser, D. Naples, J. K. Nelson, Harvey B Newman, R. J. Nichol, J. A. Nowak, J. O'Connor, W. P. Oliver, M. Orchanian, R. B. Pahlka, J. M. Paley, R. B. Patterson, Gregory J Pawloski, S. Phan-Budd, R. K. Plunkett, X. Qiu, A. Radovic, B. Rebel, C. Rosenfeld, H. A. Rubin, M. C. Sanchez, J. Schneps, A. Schreckenberger, P. Schreiner, R. Sharma, A. Sousa, N. Tagg, R. L. Talaga, Juergen Thomas, M. A. Thomson, G. Tinti, S. C. Tognini, R. Toner, D. Torretta, G. Tzanakos, J. Urheim, P. Vahle, B. Viren, A. C. Weber, R. C. Webb, Christopher G. White, L. Whitehead, L. H. Whitehead, Stanley G. Wojcicki, R. Zwaska 
TL;DR: Measurements of oscillation parameters from ν (μ) and ν(μ) disappearance using beam and atmospheric data from MINOS are reported, with minimal change to the neutrino parameters.
Abstract: We report measurements of oscillation parameters from ν_μ and ν_μ disappearance using beam and atmospheric data from MINOS. The data comprise exposures of 10.71×10^(20) protons on target in the ν_μ-dominated beam, 3.36×10^(20) protons on target in the ν_μ-enhanced beam, and 37.88 kton yr of atmospheric neutrinos. Assuming identical ν and ν oscillation parameters, we measure |Δm^2|=(2.41_(-0.10)^(+0.09))×10^(-3) eV^2 and sin^⁡2(2θ)=0.950_(-0.036)^(+0.035). Allowing independent ν and ν oscillations, we measure antineutrino parameters of |Δm^2|=(2.50_(-0.25)^(+0.23))×10^(-3) eV^2 and sin^⁡2(2θ)=0.97_(-0.08)^(+0.03), with minimal change to the neutrino parameters.

Journal ArticleDOI
TL;DR: An unbinned maximum-likelihood fit to the dimuon invariant mass distribution gives a branching fraction B(Bs(0)→μ+ μ-)=(3.0(-0.9)(+1.0))×10(-9), where the uncertainty includes both statistical and systematic contributions.
Abstract: Results are presented from a search for the rare decays B0s→μ+μ− and B0→μ+μ− in pp collisions at s√=7 and 8 TeV, with data samples corresponding to integrated luminosities of 5 and 20 fb−1, respectively, collected by the CMS experiment at the LHC. An unbinned maximum-likelihood fit to the dimuon invariant mass distribution gives a branching fraction B(B0s→μ+μ−)=(3.0+1.0−0.9)×10−9, where the uncertainty includes both statistical and systematic contributions. An excess of B0s→μ+μ− events with respect to background is observed with a significance of 4.3 standard deviations. For the decay B0→μ+μ− an upper limit of B(B0→μ+μ−)<1.1×10−9 at the 95% confidence level is determined. Both results are in agreement with the expectations from the standard model.

Journal ArticleDOI
TL;DR: The proton radius puzzle as discussed by the authors was introduced by Pohl et al. in the early 1990s and has been studied extensively since then, with the results of Pohl's measurements of the 2P and 2S states of muonic hydrogen inconsistent with those obtained from electronic hydrogen or elastic electron-proton scattering.
Abstract: The extremely precise extraction of the proton radius obtained by Pohl et al. from the measured energy difference between the 2P and 2S states of muonic hydrogen disagrees significantly with that extracted from electronic hydrogen or elastic electron–proton scattering. This discrepancy is the proton radius puzzle. In this review, we explain the origins of the puzzle and the reasons for believing it to be very significant. We identify various possible solutions of the puzzle and discuss future research needed to resolve the puzzle.

Journal ArticleDOI
S. Chatrchyan1, Vardan Khachatryan1, Albert M. Sirunyan1, Armen Tumasyan1  +3948 moreInstitutions (144)
21 Dec 2013
TL;DR: In this article, a search for the pair production of top squarks in events with a single isolated electron or muon, jets, large missing transverse momentum, and large transverse mass is presented.
Abstract: This paper presents a search for the pair production of top squarks in events with a single isolated electron or muon, jets, large missing transverse momentum, and large transverse mass. The data sample corresponds to an integrated luminosity of 19.5 inverse femtobarns of pp collisions collected in 2012 by the CMS experiment at the LHC at a center-of-mass energy of sqrt(s) = 8 TeV. No significant excess in data is observed above the expectation from standard model processes. The results are interpreted in the context of supersymmetric models with pair production of top squarks that decay either to a top quark and a neutralino or to a bottom quark and a chargino. For small mass values of the lightest supersymmetric particle, top-squark mass values up to around 650 GeV are excluded.

Journal ArticleDOI
TL;DR: It is demonstrated that many aspects of nuclear structure can be understood in terms of this nucleon-n nucleon interaction, without explicitly invoking three-nucleon forces.
Abstract: We optimize the nucleon-nucleon interaction from chiral effective field theory at next-to-next-to-leading order (NNLO). The resulting new chiral force NNLOopt yields chi(2) approximate to 1 per degree of freedom for laboratory energies below approximately 125 MeV. In the A = 3, 4 nucleon systems, the contributions of three-nucleon forces are smaller than for previous parametrizations of chiral interactions. We use NNLOopt to study properties of key nuclei and neutron matter, and we demonstrate that many aspects of nuclear structure can be understood in terms of this nucleon-nucleon interaction, without explicitly invoking three-nucleon forces.

Journal ArticleDOI
TL;DR: The global picture of antimicrobial resistance, factors that favor its spread, strategies, and limitations for its control and the need for continuous training of all stake-holders i.e., medical, veterinary, public health, and other relevant professionals as well as human consumers are examined.
Abstract: The discovery and introduction of antimicrobial agents to clinical medicine was one of the greatest medical triumphs of the 20th century that revolutionized the treatment of bacterial infections. However, the gradual emergence of populations of antimicrobial-resistant pathogenic bacteria resulting from use, misuse, and abuse of antimicrobials has today become a major global health concern. Antimicrobial resistance (AMR) genes have been suggested to originate from environmental bacteria, as clinically relevant resistance genes have been detected on the chromosome of environmental bacteria. As only a few new antimicrobials have been developed in the last decade, the further evolution of resistance poses a serious threat to public health. Urgent measures are required not only to minimize the use of antimicrobials for prophylactic and therapeutic purposes but also to look for alternative strategies for the control of bacterial infections. This review examines the global picture of antimicrobial resistance, factors that favor its spread, strategies, and limitations for its control and the need for continuous training of all stake-holders i.e., medical, veterinary, public health, and other relevant professionals as well as human consumers, in the appropriate use of antimicrobial drugs.

Journal ArticleDOI
TL;DR: In this article, results of searches for heavy stable charged particles produced in pp collisions at 7 and 8 TeV are presented corresponding to an integrated luminosity of 5.0 and 18.8 inverse femtobarns, respectively.
Abstract: Results of searches for heavy stable charged particles produced in pp collisions at sqrt(s) = 7 and 8 TeV are presented corresponding to an integrated luminosity of 5.0 inverse femtobarns and 18.8 inverse femtobarns, respectively. Data collected with the CMS detector are used to study the momentum, energy deposition, and time-of-flight of signal candidates. Leptons with an electric charge between e/3 and 8e, as well as bound states that can undergo charge exchange with the detector material, are studied. Analysis results are presented for various combinations of signatures in the inner tracker only, inner tracker and muon detector, and muon detector only. Detector signatures utilized are long time-of-flight to the outer muon system and anomalously high (or low) energy deposition in the inner tracker. The data are consistent with the expected background, and upper limits are set on the production cross section of long-lived gluinos, scalar top quarks, and scalar tau leptons, as well as pair produced long-lived leptons. Corresponding lower mass limits, ranging up to 1322 GeV for gluinos, are the most stringent to date.

Journal ArticleDOI
TL;DR: In this paper, four modifications to the DRW model by introducing additional parameters into the covariance function to search for deviations from the Damped Random Walk model on both short and long time scales.
Abstract: The damped random walk (DRW) model is increasingly used to model the variability in quasar optical light curves, but it is still uncertain whether the DRW model provides an adequate description of quasar optical variability across all time scales. Using a sample of OGLE quasar light curves, we consider four modifications to the DRW model by introducing additional parameters into the covariance function to search for deviations from the DRW model on both short and long time scales. We find good agreement with the DRW model on time scales that are well sampled by the data (from a month to a few years), possibly with some intrinsic scatter in the additional parameters, but this conclusion depends on the statistical test employed and is sensitive to whether the estimates of the photometric errors are correct to within ∼10%. On very short time scales (below a few months), we see some evidence of the existence of a cutoff below which the correlation is stronger than the DRW model, echoing the recent finding of Mushotzky et al. (2011) using quasar light curves from Kepler. On very long time scales (> a few years), the light curves do not constrain models well, but are consistent with the DRW model. Subject headings: galaxies: active — galaxies: statistics — methods: data analysis — methods: numerical — methods: statistical

Journal ArticleDOI
A. Abramowski1, Fabio Acero2, Felix Aharonian3, Felix Aharonian4  +207 moreInstitutions (28)
TL;DR: In this article, the authors measured the imprint of the EBL opacity to gamma-rays on the spectra of the brightest extragalactic sources detected with the High Energy Stereoscopic System (H.E.S.).
Abstract: The extragalactic background light (EBL) is the diffuse radiation with the second highest energy density in the Universe after the cosmic microwave background. The aim of this study is the measurement of the imprint of the EBL opacity to gamma-rays on the spectra of the brightest extragalactic sources detected with the High Energy Stereoscopic System (H.E.S.S.). The originality of the method lies in the joint fit of the EBL optical depth and of the intrinsic spectra of the sources, assuming intrinsic smoothness. Analysis of a total of ~10^5 gamma-ray events enables the detection of an EBL signature at the 8.8 std dev level and constitutes the first measurement of the EBL optical depth using very-high energy (E>100 GeV) gamma-rays. The EBL flux density is constrained over almost two decades of wavelengths (0.30-17 microns) and the peak value at 1.4 micron is derived as 15 +/- 2 (stat) +/- 3 (sys) nW / m^2 sr.

Book ChapterDOI
08 Jul 2013
TL;DR: Two new approaches rooted in linear algebra, based on matrix rank and determinants, which provide deterministic c tw | V | O ( 1 ) time algorithms, also for weighted and counting versions of connectivity problems are presented.
Abstract: It is well known that many local graph problems, like Vertex Cover?and Dominating Set, can be solved in time 2 O ( tw ) | V | O ( 1 ) for graphs G = ( V , E ) with a given tree decomposition of width tw. However, for nonlocal problems, like the fundamental class of connectivity problems, for a long time we did not know how to do this faster than tw O ( tw ) | V | O ( 1 ) . Recently, Cygan et al.?(FOCS 2011) presented Monte Carlo algorithms for a wide range of connectivity problems running in time c tw | V | O ( 1 ) for a small constant c, e.g., for Hamiltonian Cycle?and Steiner Tree. Naturally, this raises the question whether randomization is necessary to achieve this runtime; furthermore, it is desirable to also solve counting and weighted versions (the latter without incurring a pseudo-polynomial cost in the runtime in terms of the weights).We present two new approaches rooted in linear algebra, based on matrix rank and determinants, which provide deterministic c tw | V | O ( 1 ) time algorithms, also for weighted and counting versions. For example, in this time we can solve Traveling Salesman? or count the number of Hamiltonian cycles. The rank based ideas provide a rather general approach for speeding up even straightforward dynamic programming formulations by identifying "small" sets of representative partial solutions; we focus on the case of expressing connectivity via sets of partitions, but the essential ideas should have further applications. The determinant-based approach uses the Matrix Tree Theorem for deriving closed formulas for counting versions of connectivity problems; we show how to evaluate those formulas via dynamic programming.

Journal ArticleDOI
09 May 2013-Nature
TL;DR: ElectricOctupole transition strengths are determined (a direct measure of octupole correlations) for short-lived isotopes of radon and radium to constrain suitable candidates for experimental studies of atomic electric-dipole moments that might reveal extensions to the standard model.
Abstract: There is strong circumstantial evidence that certain heavy, unstable atomic nuclei are ‘octupole deformed’, that is, distorted into a pear shape. This contrasts with the more prevalent rugby-ball shape of nuclei with reflection-symmetric, quadrupole deformations. The elusive octupole deformed nuclei are of importance for nuclear structure theory, and also in searches for physics beyond the standard model; any measurable electric-dipole moment (a signature of the latter) is expected to be amplified in such nuclei. Here we determine electric octupole transition strengths (a direct measure of octupole correlations) for short-lived isotopes of radon and radium. Coulomb excitation experiments were performed using accelerated beams of heavy, radioactive ions. Our data on 220Rn and 224Ra show clear evidence for stronger octupole deformation in the latter. The results enable discrimination between differing theoretical approaches to octupole correlations, and help to constrain suitable candidates for experimental studies of atomic electric-dipole moments that might reveal extensions to the standard model. An experimental study of certain short-lived isotopes of radon and radium has found clear octupole deformation in the nuclei of the latter — that is, these nuclei are pear-shaped; the results enable discrimination between differing theoretical approaches to octupole correlations. The atomic nucleus is a many-body quantum system with a shape determined by the number of nucleons that it contains and the interactions between them. Most of the several thousand known stable and radioactive atomic nuclei, with differing numbers of protons and neutrons, are spherical or rugby-ball shaped. But there is circumstantial evidence that some heavy, unstable nuclides are distorted into a pear shape through the phenomenon of octupole deformation. Samples of these rare atomic species can be accelerated to 8% of the speed of light in the REX-ISOLDE facility at CERN, and now Coulomb excitation experiments on beams of the short-lived isotopes radium-224 and radon-220 have demonstrated clear octupole deformation in the former. The results make it possible to discriminate between the various theoretical models of octupole-deformed nuclei, and are also relevant to the pursuit of physics beyond the Standard Model.

Journal ArticleDOI
TL;DR: The pre-print version of the final publishing paper that is available from the link below as mentioned in this paper is also available from Amazon Mechanical Turk, however, the preprint version requires a subscription.
Abstract: The article is the pre-print version of the final publishing paper that is available from the link below.

Journal ArticleDOI
TL;DR: The 2,2-diphenylpicrylhydrazyl (DPPH) assay is widely used in plant biochemistry to evaluate the properties of plant constituents for scavenging free radicals as mentioned in this paper.
Abstract: The 2,2-diphenylpicrylhydrazyl (DPPH) assay is widely used in plant biochemistry to evaluate the properties of plant constituents for scavenging free radicals. The method is based on the spectrophotometric measurement of the DPPH concentration change resulting from the reaction with an antioxidant. Several protocols have been followed for this assay using different conditions such as different reaction times, solvents, pH and different compounds used as antioxidant standards. This review shows to what extent the mentioned parameters have the influence on the presented results.

Journal ArticleDOI
TL;DR: These findings could pave the way towards ultra-strong light-matter interaction on the nanoscale and active plasmonic devices operating at room temperature.
Abstract: We studied scattering and extinction of individual silver nanorods coupled to the J-aggregate form of the cyanine dye TDBC as a function of plasmon - exciton detuning. The measured single particle spectra exhibited a strongly suppressed scattering and extinction rate at wavelengths corresponding to the J-aggregate absorption band, signaling strong interaction between the localized surface plasmon of the metal core and the exciton of the surrounding molecular shell. In the context of strong coupling theory, the observed "transparency dips" correspond to an average vacuum Rabi splitting of the order of 100 meV, which approaches the plasmon dephasing rate and, thereby, the strong coupling limit for the smallest investigated particles. These findings could pave the way towards ultra-strong light-matter interaction on the nanoscale and active plasmonic devices operating at room temperature.