scispace - formally typeset
Search or ask a question
Institution

University of Warsaw

EducationWarsaw, Poland
About: University of Warsaw is a education organization based out in Warsaw, Poland. It is known for research contribution in the topics: Population & Large Hadron Collider. The organization has 20832 authors who have published 56617 publications receiving 1185084 citations. The organization is also known as: Uniwersytet Warszawski & Warsaw University.


Papers
More filters
Journal ArticleDOI
09 Jan 2003-Nature
TL;DR: In this article, the authors used infrared-laser atomic-force microscopy to reveal the native arrangement of rhodopsin, which forms paracrystalline arrays of dimers in mouse disc membranes.
Abstract: Neat rows of paired photon receptors are caught on camera in their natural state. In vertebrate retinal photoreceptors, the rod outer-segment disc membranes contain densely packed rhodopsin molecules for optimal light absorption and subsequent amplification by the visual signalling cascade1, but how these photon receptors are organized with respect to each other is not known. Here we use infrared-laser atomic-force microscopy to reveal the native arrangement of rhodopsin, which forms paracrystalline arrays of dimers in mouse disc membranes. The visualization of these closely packed rhodopsin dimers in native membranes gives experimental support to earlier inferences about their supramolecular structure2,3 and provides insight into how light signalling is controlled.

748 citations

Journal ArticleDOI
B. P. Abbott1, Richard J. Abbott1, T. D. Abbott2, Matthew Abernathy1  +961 moreInstitutions (100)
TL;DR: The discovery of the GW150914 with the Advanced LIGO detectors provides the first observational evidence for the existence of binary black-hole systems that inspiral and merge within the age of the Universe as mentioned in this paper.
Abstract: The discovery of the gravitational-wave source GW150914 with the Advanced LIGO detectors provides the first observational evidence for the existence of binary black-hole systems that inspiral and merge within the age of the Universe. Such black-hole mergers have been predicted in two main types of formation models, involving isolated binaries in galactic fields or dynamical interactions in young and old dense stellar environments. The measured masses robustly demonstrate that relatively "heavy" black holes (≳25M⊙) can form in nature. This discovery implies relatively weak massive-star winds and thus the formation of GW150914 in an environment with metallicity lower than ∼1/2 of the solar value. The rate of binary black-hole mergers inferred from the observation of GW150914 is consistent with the higher end of rate predictions (≳1Gpc−3yr−1) from both types of formation models. The low measured redshift (z∼0.1) of GW150914 and the low inferred metallicity of the stellar progenitor imply either binary black-hole formation in a low-mass galaxy in the local Universe and a prompt merger, or formation at high redshift with a time delay between formation and merger of several Gyr. This discovery motivates further studies of binary-black-hole formation astrophysics. It also has implications for future detections and studies by Advanced LIGO and Advanced Virgo, and gravitational-wave detectors in space.

742 citations

Journal ArticleDOI
TL;DR: PDBsum is a web server providing structural information on the entries in the Protein Data Bank, primarily image‐based and include protein secondary structure, protein‐ligand and protein‐DNA interactions, PROCHECK analyses of structural quality, and many others.
Abstract: PDBsum is a web server providing structural information on the entries in the Protein Data Bank (PDB). The analyses are primarily image-based and include protein secondary structure, protein-ligand and protein-DNA interactions, PROCHECK analyses of structural quality, and many others. The 3D structures can be viewed interactively in RasMol, PyMOL, and a JavaScript viewer called 3Dmol.js. Users can upload their own PDB files and obtain a set of password-protected PDBsum analyses for each. The server is freely accessible to all at: http://www.ebi.ac.uk/pdbsum.

740 citations

Journal ArticleDOI
Florence M.G. Cavalli1, Marc Remke1, Marc Remke2, Marc Remke3, Ladislav Rampášek1, John Peacock1, David Shih1, Betty Luu1, Livia Garzia1, Jonathon Torchia1, Carolina Nor1, A. Sorana Morrissy1, Sameer Agnihotri4, Yuan Yao Thompson1, Claudia M. Kuzan-Fischer1, Hamza Farooq1, Keren Isaev1, Keren Isaev5, Craig Daniels1, Byung Kyu Cho6, Seung-Ki Kim6, Kyu-Chang Wang6, Ji Yeoun Lee6, Wiesława Grajkowska7, Marta Perek-Polnik7, Alexandre Vasiljevic, Cécile Faure-Conter, Anne Jouvet8, Caterina Giannini9, Amulya A. Nageswara Rao9, Kay Ka Wai Li10, Ho Keung Ng10, Charles G. Eberhart11, Ian F. Pollack4, Ronald L. Hamilton4, G. Yancey Gillespie12, James M. Olson13, James M. Olson14, Sarah Leary14, William A. Weiss15, Boleslaw Lach16, Boleslaw Lach17, Lola B. Chambless18, Reid C. Thompson18, Michael K. Cooper18, Rajeev Vibhakar19, Peter Hauser20, Marie Lise C. van Veelen21, Johan M. Kros21, Pim J. French21, Young Shin Ra22, Toshihiro Kumabe23, Enrique López-Aguilar24, Karel Zitterbart25, Jaroslav Sterba25, Gaetano Finocchiaro, Maura Massimino, Erwin G. Van Meir26, Satoru Osuka26, Tomoko Shofuda, Almos Klekner27, Massimo Zollo28, Jeffrey R. Leonard29, Joshua B. Rubin29, Nada Jabado30, Steffen Albrecht31, Steffen Albrecht30, Jaume Mora, Timothy E. Van Meter32, Shin Jung33, Andrew S. Moore34, Andrew R. Hallahan34, Jennifer A. Chan35, Daniela Pretti da Cunha Tirapelli36, Carlos Gilberto Carlotti36, Maryam Fouladi37, José Pimentel, Claudia C. Faria, Ali G. Saad38, Luca Massimi39, Linda M. Liau40, Helen Wheeler41, Hideo Nakamura42, Samer K. Elbabaa43, Mario Perezpeña-Diazconti, Fernando Chico Ponce de León, Shenandoah Robinson44, Michal Zapotocky1, Alvaro Lassaletta1, Annie Huang1, Cynthia Hawkins1, Uri Tabori1, Eric Bouffet1, Ute Bartels1, Peter B. Dirks1, James T. Rutka1, Gary D. Bader1, Jüri Reimand1, Jüri Reimand5, Anna Goldenberg1, Vijay Ramaswamy1, Michael D. Taylor1 
TL;DR: Similarity network fusion (SNF) applied to genome-wide DNA methylation and gene expression data across 763 primary samples identifies very homogeneous clusters of patients, supporting the presence of medulloblastoma subtypes.

737 citations

Journal ArticleDOI
TL;DR: In this article, a review compiles results of experimental and theoretical studies on thin films and quantum structures of semiconductors with randomly distributed Mn ions, which exhibit spintronic functionalities associated with collective ferromagnetic spin ordering.
Abstract: This review compiles results of experimental and theoretical studies on thin films and quantum structures of semiconductors with randomly distributed Mn ions, which exhibit spintronic functionalities associated with collective ferromagnetic spin ordering. Properties of p-type Mn-containing III-V as well as II-VI, IV-VI, V-2 -VI3, I-II-V, and elemental group IV semiconductors are described, paying particular attention to the most thoroughly investigated system (Ga, Mn)As that supports the hole-mediated ferromagnetic order up to 190 K for the net concentration of Mn spins below 10%. Multilayer structures showing efficient spin injection and spin-related magnetotransport properties as well as enabling magnetization manipulation by strain, light, electric fields, and spin currents are presented together with their impact on metal spintronics. The challenging interplay between magnetic and electronic properties in topologically trivial and nontrivial systems is described, emphasizing the entangled roles of disorder and correlation at the carrier localization boundary. Finally, the case of dilute magnetic insulators is considered, such as (Ga, Mn)N, where low-temperature spin ordering is driven by short-ranged superexchange that is ferromagnetic for certain charge states of magnetic impurities.

731 citations


Authors

Showing all 21191 results

NameH-indexPapersCitations
Alexander Malakhov139148699556
Emmanuelle Perez138155099016
Piotr Zalewski135138889976
Krzysztof Doroba133144089029
Hector F. DeLuca133130369395
Krzysztof M. Gorski132380105912
Igor Golutvin131128288559
Jan Krolikowski131128983994
Michal Szleper130123882036
Anatoli Zarubin129120486435
Malgorzata Kazana129117581106
Artur Kalinowski129116281906
Predrag Milenovic129118581144
Marcin Konecki128117879392
Karol Bunkowski128119279455
Network Information
Related Institutions (5)
Centre national de la recherche scientifique
382.4K papers, 13.6M citations

90% related

University of Paris-Sud
52.7K papers, 2.1M citations

90% related

ETH Zurich
122.4K papers, 5.1M citations

90% related

École Normale Supérieure
99.4K papers, 3M citations

89% related

Max Planck Society
406.2K papers, 19.5M citations

89% related

Performance
Metrics
No. of papers from the Institution in previous years
YearPapers
2023176
2022619
20212,880
20203,208
20193,130
20183,164