scispace - formally typeset
Search or ask a question
Institution

University of Warsaw

EducationWarsaw, Poland
About: University of Warsaw is a education organization based out in Warsaw, Poland. It is known for research contribution in the topics: Population & Large Hadron Collider. The organization has 20832 authors who have published 56617 publications receiving 1185084 citations. The organization is also known as: Uniwersytet Warszawski & Warsaw University.


Papers
More filters
Journal ArticleDOI
B. P. Abbott1, Richard J. Abbott1, T. D. Abbott2, Fausto Acernese3  +1237 moreInstitutions (131)
TL;DR: In this paper, the authors place constraints on the dipole radiation and possible deviations from GR in the post-Newtonian coefficients that govern the inspiral regime of a binary neutron star inspiral.
Abstract: The recent discovery by Advanced LIGO and Advanced Virgo of a gravitational wave signal from a binary neutron star inspiral has enabled tests of general relativity (GR) with this new type of source. This source, for the first time, permits tests of strong-field dynamics of compact binaries in the presence of matter. In this Letter, we place constraints on the dipole radiation and possible deviations from GR in the post-Newtonian coefficients that govern the inspiral regime. Bounds on modified dispersion of gravitational waves are obtained; in combination with information from the observed electromagnetic counterpart we can also constrain effects due to large extra dimensions. Finally, the polarization content of the gravitational wave signal is studied. The results of all tests performed here show good agreement with GR.

430 citations

Journal ArticleDOI
Julia Koehler Leman1, Brian D. Weitzner2, Brian D. Weitzner3, Steven M. Lewis4, Steven M. Lewis5, Jared Adolf-Bryfogle6, Nawsad Alam7, Rebecca F. Alford3, Melanie L. Aprahamian8, David Baker2, Kyle A. Barlow9, Patrick Barth10, Patrick Barth11, Benjamin Basanta2, Brian J. Bender12, Kristin Blacklock13, Jaume Bonet14, Jaume Bonet11, Scott E. Boyken2, Phil Bradley15, Christopher Bystroff16, Patrick Conway2, Seth Cooper17, Bruno E. Correia11, Bruno E. Correia14, Brian Coventry2, Rhiju Das18, René M. de Jong19, Frank DiMaio2, Lorna Dsilva17, Roland L. Dunbrack20, Alex Ford2, Brandon Frenz2, Darwin Y. Fu12, Caleb Geniesse18, Lukasz Goldschmidt2, Ragul Gowthaman21, Jeffrey J. Gray3, Dominik Gront22, Sharon L. Guffy5, Scott Horowitz23, Po-Ssu Huang2, Thomas Huber24, Timothy M. Jacobs5, Jeliazko R. Jeliazkov3, David K. Johnson25, Kalli Kappel18, John Karanicolas20, Hamed Khakzad14, Hamed Khakzad26, Karen R. Khar25, Sagar D. Khare13, Firas Khatib27, Alisa Khramushin7, Indigo Chris King2, Robert Kleffner17, Brian Koepnick2, Tanja Kortemme9, Georg Kuenze12, Brian Kuhlman5, Daisuke Kuroda28, Jason W. Labonte3, Jason W. Labonte29, Jason K. Lai10, Gideon Lapidoth30, Andrew Leaver-Fay5, Steffen Lindert8, Thomas W. Linsky2, Nir London7, Joseph H. Lubin3, Sergey Lyskov3, Jack Maguire5, Lars Malmström31, Lars Malmström14, Lars Malmström26, Enrique Marcos2, Orly Marcu7, Nicholas A. Marze3, Jens Meiler12, Rocco Moretti12, Vikram Khipple Mulligan2, Santrupti Nerli32, Christoffer Norn30, Shane O’Conchúir9, Noah Ollikainen9, Sergey Ovchinnikov2, Michael S. Pacella3, Xingjie Pan9, Hahnbeom Park2, Ryan E. Pavlovicz2, Manasi A. Pethe13, Brian G. Pierce21, Kala Bharath Pilla24, Barak Raveh7, P. Douglas Renfrew, Shourya S. Roy Burman3, Aliza B. Rubenstein13, Marion F. Sauer12, Andreas Scheck11, Andreas Scheck14, William R. Schief6, Ora Schueler-Furman7, Yuval Sedan7, Alexander M. Sevy12, Nikolaos G. Sgourakis32, Lei Shi2, Justin B. Siegel33, Daniel-Adriano Silva2, Shannon Smith12, Yifan Song2, Amelie Stein9, Maria Szegedy13, Frank D. Teets5, Summer B. Thyme2, Ray Yu-Ruei Wang2, Andrew M. Watkins18, Lior Zimmerman7, Richard Bonneau1 
TL;DR: This Perspective reviews tools developed over the past five years in the Rosetta software, including over 80 methods, and discusses improvements to the score function, user interfaces and usability.
Abstract: The Rosetta software for macromolecular modeling, docking and design is extensively used in laboratories worldwide. During two decades of development by a community of laboratories at more than 60 institutions, Rosetta has been continuously refactored and extended. Its advantages are its performance and interoperability between broad modeling capabilities. Here we review tools developed in the last 5 years, including over 80 methods. We discuss improvements to the score function, user interfaces and usability. Rosetta is available at http://www.rosettacommons.org.

430 citations

Journal ArticleDOI
Y. Fukuda1, T. Hayakawa1, E. Ichihara1, Kunio Inoue1, K. Ishihara1, H. Ishino1, Yoshitaka Itow1, Takaaki Kajita1, J. Kameda1, S. Kasuga1, Ken-ichiro Kobayashi1, Y. Kobayashi1, Yusuke Koshio1, M. Miura1, Masayuki Nakahata1, Shoei Nakayama1, A. Okada1, Ko Okumura1, Nobuyuki Sakurai1, Masato Shiozawa1, Yasunari Suzuki1, Y. Takeuchi1, Y. Totsuka1, Shinya Yamada1, M. Earl2, Alec Habig2, E. Kearns2, M. D. Messier2, Kate Scholberg2, J. L. Stone2, L. R. Sulak2, C. W. Walter2, M. Goldhaber3, T. Barszczak4, David William Casper4, W. Gajewski4, W. R. Kropp4, L. R. Price4, Frederick Reines4, Michael B. Smy4, H. W. Sobel4, Mark R. Vagins4, K. S. Ganezer5, W. E. Keig5, R. W. Ellsworth6, S. Tasaka7, J. W. Flanagan8, A. Kibayashi8, John G. Learned8, S. Matsuno8, V. J. Stenger8, D. Takemori8, T. Ishii, Junichi Kanzaki, T. Kobayashi, S. Mine, K. Nakamura, K. Nishikawa, Yuichi Oyama, A. Sakai, Makoto Sakuda, Osamu Sasaki, S. Echigo9, M. Kohama9, Atsumu Suzuki9, Todd Haines4, Todd Haines10, E. Blaufuss11, B. K. Kim11, R. Sanford11, R. Svoboda11, M. L. Chen12, J. A. Goodman12, G. W. Sullivan12, J. Hill13, C. K. Jung13, K. Martens13, C. Mauger13, C. McGrew13, E. Sharkey13, B. Viren13, C. Yanagisawa13, W. Doki14, Kazumasa Miyano14, H. Okazawa14, C. Saji14, M. Takahata14, Y. Nagashima15, M. Takita15, Takashi Yamaguchi15, Minoru Yoshida15, Soo-Bong Kim16, M. Etoh17, K. Fujita17, Akira Hasegawa17, Takehisa Hasegawa17, S. Hatakeyama17, T. Iwamoto17, M. Koga17, Tomoyuki Maruyama17, Hiroshi Ogawa17, J. Shirai17, A. Suzuki17, F. Tsushima17, Masatoshi Koshiba1, M. Nemoto18, Kyoshi Nishijima18, T. Futagami19, Y. Hayato19, Y. Kanaya19, K. Kaneyuki19, Y. Watanabe19, D. Kielczewska4, D. Kielczewska20, R. A. Doyle21, J. S. George21, J. S. George22, A. L. Stachyra21, L. Wai23, L. Wai21, R. J. Wilkes21, K. K. Young21 
TL;DR: A total of 614 upward throughgoing muons were observed by Super-Kamiokande during 537 detector live days and the measured muon flux is [1.74{plus_minus} 0.02(sys)]{times} 10{sup {minus}13} cm{sup 2}thinsp2{theta} {gt}0.
Abstract: A total of 614 upward throughgoing muons of minimum energy 1.6thinspthinspGeV are observed by Super-Kamiokande during 537 detector live days. The measured muon flux is [1.74{plus_minus}0.07(stat){plus_minus} 0.02(sys)]{times}10{sup {minus}13} cm{sup {minus}2}thinsps{sup {minus}1}thinspsr{sup {minus}1} compared to an expected flux of [1.97{plus_minus}0.44(theor)]{times} 10{sup {minus}13} cm{sup {minus}2}thinsps{sup {minus}1}thinspsr{sup {minus}1} . The absolute measured flux is in agreement with the prediction within the errors. However, the zenith-angle dependence of the observed upward throughgoing muon flux does not agree with no-oscillation predictions. The observed distortion in shape is consistent with the {nu}{sub {mu}}{leftrightarrow}{nu}{sub {tau}} oscillation hypothesis with sin{sup 2}thinsp2{theta} {gt}0.4 and 1{times}10{sup {minus}3}{lt}{Delta}m{sup 2}{lt}1{times}1 0{sup {minus}1} eV{sup 2} at 90{percent} confidence level. {copyright} {ital 1999} {ital The American Physical Society}

429 citations

Journal ArticleDOI
TL;DR: In this paper, a general framework for integration over certain infinite dimensional spaces is first developed using projective limits of a projective family of compact Hausdorff spaces, then applied to gauge theories to carry out integration over the non-linear, infinite-dimensional spaces of connections modulo gauge transformations.
Abstract: A general framework for integration over certain infinite dimensional spaces is first developed using projective limits of a projective family of compact Hausdorff spaces. The procedure is then applied to gauge theories to carry out integration over the non‐linear, infinite dimensional spaces of connections modulo gauge transformations. This method of evaluating functional integrals can be used either in the Euclidean path integral approach or the Lorentzian canonical approach. A number of measures discussed are diffeomorphism invariant and therefore of interest to (the connection dynamics version of) quantum general relativity. The account is pedagogical; in particular, prior knowledge of projective techniques is not assumed.

425 citations

Journal ArticleDOI
A. Abada1, Marcello Abbrescia2, Marcello Abbrescia3, Shehu S. AbdusSalam4  +1496 moreInstitutions (238)
TL;DR: In this paper, the authors describe the detailed design and preparation of a construction project for a post-LHC circular energy frontier collider in collaboration with national institutes, laboratories and universities worldwide, and enhanced by a strong participation of industrial partners.
Abstract: Particle physics has arrived at an important moment of its history. The discovery of the Higgs boson, with a mass of 125 GeV, completes the matrix of particles and interactions that has constituted the “Standard Model” for several decades. This model is a consistent and predictive theory, which has so far proven successful at describing all phenomena accessible to collider experiments. However, several experimental facts do require the extension of the Standard Model and explanations are needed for observations such as the abundance of matter over antimatter, the striking evidence for dark matter and the non-zero neutrino masses. Theoretical issues such as the hierarchy problem, and, more in general, the dynamical origin of the Higgs mechanism, do likewise point to the existence of physics beyond the Standard Model. This report contains the description of a novel research infrastructure based on a highest-energy hadron collider with a centre-of-mass collision energy of 100 TeV and an integrated luminosity of at least a factor of 5 larger than the HL-LHC. It will extend the current energy frontier by almost an order of magnitude. The mass reach for direct discovery will reach several tens of TeV, and allow, for example, to produce new particles whose existence could be indirectly exposed by precision measurements during the earlier preceding e+e– collider phase. This collider will also precisely measure the Higgs self-coupling and thoroughly explore the dynamics of electroweak symmetry breaking at the TeV scale, to elucidate the nature of the electroweak phase transition. WIMPs as thermal dark matter candidates will be discovered, or ruled out. As a single project, this particle collider infrastructure will serve the world-wide physics community for about 25 years and, in combination with a lepton collider (see FCC conceptual design report volume 2), will provide a research tool until the end of the 21st century. Collision energies beyond 100 TeV can be considered when using high-temperature superconductors. The European Strategy for Particle Physics (ESPP) update 2013 stated “To stay at the forefront of particle physics, Europe needs to be in a position to propose an ambitious post-LHC accelerator project at CERN by the time of the next Strategy update”. The FCC study has implemented the ESPP recommendation by developing a long-term vision for an “accelerator project in a global context”. This document describes the detailed design and preparation of a construction project for a post-LHC circular energy frontier collider “in collaboration with national institutes, laboratories and universities worldwide”, and enhanced by a strong participation of industrial partners. Now, a coordinated preparation effort can be based on a core of an ever-growing consortium of already more than 135 institutes worldwide. The technology for constructing a high-energy circular hadron collider can be brought to the technology readiness level required for constructing within the coming ten years through a focused R&D programme. The FCC-hh concept comprises in the baseline scenario a power-saving, low-temperature superconducting magnet system based on an evolution of the Nb3Sn technology pioneered at the HL-LHC, an energy-efficient cryogenic refrigeration infrastructure based on a neon-helium (Nelium) light gas mixture, a high-reliability and low loss cryogen distribution infrastructure based on Invar, high-power distributed beam transfer using superconducting elements and local magnet energy recovery and re-use technologies that are already gradually introduced at other CERN accelerators. On a longer timescale, high-temperature superconductors can be developed together with industrial partners to achieve an even more energy efficient particle collider or to reach even higher collision energies.The re-use of the LHC and its injector chain, which also serve for a concurrently running physics programme, is an essential lever to come to an overall sustainable research infrastructure at the energy frontier. Strategic R&D for FCC-hh aims at minimising construction cost and energy consumption, while maximising the socio-economic impact. It will mitigate technology-related risks and ensure that industry can benefit from an acceptable utility. Concerning the implementation, a preparatory phase of about eight years is both necessary and adequate to establish the project governance and organisation structures, to build the international machine and experiment consortia, to develop a territorial implantation plan in agreement with the host-states’ requirements, to optimise the disposal of land and underground volumes, and to prepare the civil engineering project. Such a large-scale, international fundamental research infrastructure, tightly involving industrial partners and providing training at all education levels, will be a strong motor of economic and societal development in all participating nations. The FCC study has implemented a set of actions towards a coherent vision for the world-wide high-energy and particle physics community, providing a collaborative framework for topically complementary and geographically well-balanced contributions. This conceptual design report lays the foundation for a subsequent infrastructure preparatory and technical design phase.

425 citations


Authors

Showing all 21191 results

NameH-indexPapersCitations
Alexander Malakhov139148699556
Emmanuelle Perez138155099016
Piotr Zalewski135138889976
Krzysztof Doroba133144089029
Hector F. DeLuca133130369395
Krzysztof M. Gorski132380105912
Igor Golutvin131128288559
Jan Krolikowski131128983994
Michal Szleper130123882036
Anatoli Zarubin129120486435
Malgorzata Kazana129117581106
Artur Kalinowski129116281906
Predrag Milenovic129118581144
Marcin Konecki128117879392
Karol Bunkowski128119279455
Network Information
Related Institutions (5)
Centre national de la recherche scientifique
382.4K papers, 13.6M citations

90% related

University of Paris-Sud
52.7K papers, 2.1M citations

90% related

ETH Zurich
122.4K papers, 5.1M citations

90% related

École Normale Supérieure
99.4K papers, 3M citations

89% related

Max Planck Society
406.2K papers, 19.5M citations

89% related

Performance
Metrics
No. of papers from the Institution in previous years
YearPapers
2023176
2022619
20212,880
20203,208
20193,130
20183,164