scispace - formally typeset
Search or ask a question
Institution

University of Warsaw

EducationWarsaw, Poland
About: University of Warsaw is a education organization based out in Warsaw, Poland. It is known for research contribution in the topics: Population & Large Hadron Collider. The organization has 20832 authors who have published 56617 publications receiving 1185084 citations. The organization is also known as: Uniwersytet Warszawski & Warsaw University.


Papers
More filters
Journal ArticleDOI
TL;DR: In this paper, the authors considered the issue of power asymmetry in the third-year WMAP data, adopting a previously introduced modulation framework, computing both frequentist probabilities and Bayesian evidences, and found that the model consisting of an isotropic CMB sky modulated by a dipole field gives a substantially better fit to the observations than the purely isotropical model, even when accounting for the larger prior volume.
Abstract: We consider the issue of hemispherical power asymmetry in the third-year WMAP data, adopting a previously introduced modulation framework. Computing both frequentist probabilities and Bayesian evidences, we find that the model consisting of an isotropic CMB sky modulated by a dipole field gives a substantially better fit to the observations than the purely isotropic model, even when accounting for the larger prior volume. For the ILC map, the Bayesian log-evidence difference is ~1.8 in favor of the modulated model, and the raw improvement in maximum log likelihood is 6.1. The best-fit modulation dipole axis points toward (l, b) = (225°, -27°), and the modulation amplitude is 0.114, in excellent agreement with the results from the first-year analyses. The frequentist probability of obtaining such a high modulation amplitude in an isotropic universe is ~1%. These results are not sensitive to data set or sky cut. Thus, the statistical evidence for a power asymmetry anomaly is both substantial and robust, although not decisive, for the currently available data. Increased sky coverage through better foreground handling and full-sky and high-sensitivity polarization maps may shed further light on this issue.

306 citations

Journal ArticleDOI
TL;DR: Well-resolved absorption spectra of biological molecules in the far-IR (FIR) spectral region recorded by terahertz time-domain spectroscopy (THz-TDS), which can provide a direct fingerprint of the molecular structure or conformational state of a compound.
Abstract: We present well-resolved absorption spectra of biological molecules in the far-IR (FIR) spectral region recorded by terahertz time-domain spectroscopy (THz- TDS). As an illustrative example we discuss the absorption spectra of benzoic acid, its monosubstitutes salicylic acid (2-hydroxy-benzoic acid), 3- and 4-hydroxybenzoic acid, and aspirin (acetylsalicylic acid) in the spectral region between 18 and 150 cm 1 . The spectra exhibit distinct features originating from low-frequency vibrational modes caused by intra- or intermolecular collective motion and lattice modes. Due to the collective origin of the observed modes the absorption spectra are highly sensitive to the overall structure and configuration of the molecules, as well as their environment. The THz-TDS procedure can provide a direct fingerprint of the molecular structure or conformational state of a compound. © 2002 Wiley Periodicals, Inc. Biopolymers (Biospec- troscopy) 67: 310 -313, 2002

306 citations

Journal ArticleDOI
TL;DR: The proton radius puzzle as discussed by the authors was introduced by Pohl et al. in the early 1990s and has been studied extensively since then, with the results of Pohl's measurements of the 2P and 2S states of muonic hydrogen inconsistent with those obtained from electronic hydrogen or elastic electron-proton scattering.
Abstract: The extremely precise extraction of the proton radius obtained by Pohl et al. from the measured energy difference between the 2P and 2S states of muonic hydrogen disagrees significantly with that extracted from electronic hydrogen or elastic electron–proton scattering. This discrepancy is the proton radius puzzle. In this review, we explain the origins of the puzzle and the reasons for believing it to be very significant. We identify various possible solutions of the puzzle and discuss future research needed to resolve the puzzle.

306 citations

Journal ArticleDOI
TL;DR: In this paper, the authors utilized results for around two thousand star cluster models simulated using the MOCCA code for star cluster evolution (Survey Database I) to determine the astrophysical properties and local merger rate densities for coalescing binary black holes (BBHs) originating from globular clusters (GCs).
Abstract: In this first of a series of papers, we utilize results for around two thousand star cluster models simulated using the MOCCA code for star cluster evolution (Survey Database I) to determine the astrophysical properties and local merger rate densities for coalescing binary black holes (BBHs) originating from globular clusters (GCs). We extracted information for all coalescing BBHs that escape the cluster models and subsequently merge within a Hubble time along with BBHs that are retained in our GC models and merge inside the cluster via gravitational wave (GW) emission. By obtaining results from a substantial number of realistic star cluster models that cover different initial parameters, we have an extremely large statistical sample of BBHs with stellar mass and massive stellar BH ($\lesssim 100M_{\odot}$) components that merge within a Hubble time. Using this data, we estimate local merger rate densities for these BBHs originating from GCs to be at least 5.4 ${\rm Gpc}^{-3}\,{\rm yr}^{-1}$

305 citations

Journal ArticleDOI
TL;DR: In this article, the authors show that the long gamma-ray burst (GRB) 100621A, at the time the brightest X-ray transient ever detected by Swift-XRT in the 0.3-10 keV range, has been observed with the HESS.
Abstract: The long gamma-ray burst (GRB) 100621A, at the time the brightest X-ray transient ever detected by Swift-XRT in the 0.3-10 keV range, has been observed with the H.E.S.S. imaging air Cherenkov telescope array, sensitive to gamma radiation in the very-high-energy (VHE, >100 GeV) regime. Due to its relatively small redshift of z similar to 0.5, the favourable position in the southern sky and the relatively short follow-up time (<700 s after the satellite trigger) of the H.E.S.S. observations, this GRB could be within the sensitivity reach of the HESS. instrument. The analysis of the HESS. data shows no indication of emission and yields an integral flux upper limit above similar to 380 GeV of 4.2 x 10(-12) cm(-2) s(-1) s (95% confidence level), assuming a simple Band function extension model. A comparison to a spectral-temporal model, normalised to the prompt flux at sub-MeV energies, constraints the existence of a temporally extended and strong additional hard power law, as has been observed in the other bright X-ray GRB 130427A. A comparison between the HESS. upper limit and the contemporaneous energy output in X-rays constrains the ratio between the X-ray and VHE gamma-ray fluxes to be greater than 0.4. This value is an important quantity for modelling the afterglow and can constrain leptonic emission scenarios, where leptons are responsible for the X-ray emission and might produce VHE gamma rays.

305 citations


Authors

Showing all 21191 results

NameH-indexPapersCitations
Alexander Malakhov139148699556
Emmanuelle Perez138155099016
Piotr Zalewski135138889976
Krzysztof Doroba133144089029
Hector F. DeLuca133130369395
Krzysztof M. Gorski132380105912
Igor Golutvin131128288559
Jan Krolikowski131128983994
Michal Szleper130123882036
Anatoli Zarubin129120486435
Malgorzata Kazana129117581106
Artur Kalinowski129116281906
Predrag Milenovic129118581144
Marcin Konecki128117879392
Karol Bunkowski128119279455
Network Information
Related Institutions (5)
Centre national de la recherche scientifique
382.4K papers, 13.6M citations

90% related

University of Paris-Sud
52.7K papers, 2.1M citations

90% related

ETH Zurich
122.4K papers, 5.1M citations

90% related

École Normale Supérieure
99.4K papers, 3M citations

89% related

Max Planck Society
406.2K papers, 19.5M citations

89% related

Performance
Metrics
No. of papers from the Institution in previous years
YearPapers
2023176
2022619
20212,880
20203,208
20193,130
20183,164