scispace - formally typeset
Search or ask a question
Institution

University of Warwick

EducationCoventry, Warwickshire, United Kingdom
About: University of Warwick is a education organization based out in Coventry, Warwickshire, United Kingdom. It is known for research contribution in the topics: Population & White dwarf. The organization has 26212 authors who have published 77127 publications receiving 2666552 citations. The organization is also known as: Warwick University & The University of Warwick.


Papers
More filters
Journal ArticleDOI
26 Apr 2013-Science
TL;DR: Pulsar J0348+0432 is only the second neutron star with a precisely determined mass of 2 M☉
Abstract: Many physically motivated extensions to general relativity (GR) predict significant deviations at energies present in massive neutron stars. We report the measurement of a 2.01 \(\pm \) 0.04 solar mass (M\(_\odot \)) pulsar in a 2.46-h orbit around a 0.172 \(\pm \) 0.003 M\(_\odot \) white dwarf. The high pulsar mass and the compact orbit make this system a sensitive laboratory of a previously untested strong-field gravity regime. Thus far, the observed orbital decay agrees with GR, supporting its validity even for the extreme conditions present in the system. The resulting constraints on deviations support the use of GR-based templates for ground-based gravitational wave detection experiments. Additionally, the system strengthens recent constraints on the properties of dense matter and provides novel insight to binary stellar astrophysics and pulsar recycling.

3,224 citations

Journal ArticleDOI
13 Jul 2006-Nature
TL;DR: Initial results for a tetraplegic human using a pilot NMP suggest that NMPs based upon intracortical neuronal ensemble spiking activity could provide a valuable new neurotechnology to restore independence for humans with paralysis.
Abstract: Neuromotor prostheses (NMPs) aim to replace or restore lost motor functions in paralysed humans by routeing movement-related signals from the brain, around damaged parts of the nervous system, to external effectors. To translate preclinical results from intact animals to a clinically useful NMP, movement signals must persist in cortex after spinal cord injury and be engaged by movement intent when sensory inputs and limb movement are long absent. Furthermore, NMPs would require that intention-driven neuronal activity be converted into a control signal that enables useful tasks. Here we show initial results for a tetraplegic human (MN) using a pilot NMP. Neuronal ensemble activity recorded through a 96-microelectrode array implanted in primary motor cortex demonstrated that intended hand motion modulates cortical spiking patterns three years after spinal cord injury. Decoders were created, providing a ‘neural cursor’ with which MN opened simulated e-mail and operated devices such as a television, even while conversing. Furthermore, MN used neural control to open and close a prosthetic hand, and perform rudimentary actions with a multi-jointed robotic arm. These early results suggest that NMPs based upon intracortical neuronal ensemble spiking activity could provide a valuable new neurotechnology to restore independence for humans with paralysis. The cover shows Matt Nagle, first participant in the BrainGate pilot clinical trial. He is unable to move his arms or legs following cervical spinal cord injury. Researchers at the Department of Neuroscience at Brown University, working with biotech company Cyberkinetics and 3 other institutions, demonstrate that movement-related signals can be relayed from the brain via an implanted BrainGate chip, allowing the patient to drive a computer screen cursor and activate simple robotic devices. Such neuromotor prostheses could pave the way towards systems to replace or restore lost motor function in paralysed humans. Prior to this advance, this type of work has been performed chiefly in monkeys. The latest example of such research has achieved a large increase in speed over current devices, enhancing the prospects for clinically viable brain-machine interfaces.

3,120 citations

Journal ArticleDOI
TL;DR: The a-calculus is presented, a calculus of communicating systems in which one can naturally express processes which have changing structure, including the algebraic theory of strong bisimilarity and strong equivalence, including a new notion of equivalence indexed by distinctions.
Abstract: We present the a-calculus, a calculus of communicating systems in which one can naturally express processes which have changing structure. Not only may the component agents of a system be arbitrarily linked, but a communication between neighbours may carry information which changes that linkage. The calculus is an extension of the process algebra CCS, following work by Engberg and Nielsen, who added mobility to CCS while preserving its algebraic properties. The rr-calculus gains simplicity by removing all distinction between variables and constants; communication links are identified by names, and computation is represented purely as the communication of names across links. After an illustrated description of how the n-calculus generalises conventional process algebras in treating mobility, several examples exploiting mobility are given in some detail. The important examples are the encoding into the n-calculus of higher-order functions (the I-calculus and combinatory algebra), the transmission of processes as values, and the representation of data structures as processes. The paper continues by presenting the algebraic theory of strong bisimilarity and strong equivalence, including a new notion of equivalence indexed by distinctions-i.e., assumptions of inequality among names. These theories are based upon a semantics in terms of a labeled transition system and a notion of strong bisimulation, both of which are expounded in detail in a companion paper. We also report briefly on work-in-progress based upon the corresponding notion of weak bisimulation, in which internal actions cannot be observed. 0 1992 Academic Press, Inc.

3,093 citations

Journal ArticleDOI
09 May 2002-Nature
TL;DR: The 8,667,507 base pair linear chromosome of Streptomyces coelicolor is reported, containing the largest number of genes so far discovered in a bacterium.
Abstract: Streptomyces coelicolor is a representative of the group of soil-dwelling, filamentous bacteria responsible for producing most natural antibiotics used in human and veterinary medicine. Here we report the 8,667,507 base pair linear chromosome of this organism, containing the largest number of genes so far discovered in a bacterium. The 7,825 predicted genes include more than 20 clusters coding for known or predicted secondary metabolites. The genome contains an unprecedented proportion of regulatory genes, predominantly those likely to be involved in responses to external stimuli and stresses, and many duplicated gene sets that may represent 'tissue-specific' isoforms operating in different phases of colonial development, a unique situation for a bacterium. An ancient synteny was revealed between the central 'core' of the chromosome and the whole chromosome of pathogens Mycobacterium tuberculosis and Corynebacterium diphtheriae. The genome sequence will greatly increase our understanding of microbial life in the soil as well as aiding the generation of new drug candidates by genetic engineering.

3,077 citations

Journal ArticleDOI
TL;DR: The largest declines in risk exposure from 2010 to 2019 were among a set of risks that are strongly linked to social and economic development, including household air pollution; unsafe water, sanitation, and handwashing; and child growth failure.

3,059 citations


Authors

Showing all 26659 results

NameH-indexPapersCitations
David Miller2032573204840
Daniel R. Weinberger177879128450
Kay-Tee Khaw1741389138782
Joseph E. Stiglitz1641142152469
Edmund T. Rolls15361277928
Thomas J. Smith1401775113919
Tim Jones135131491422
Ian Ford13467885769
Paul Harrison133140080539
Sinead Farrington133142291099
Peter Hall132164085019
Paul Brennan132122172748
G. T. Jones13186475491
Peter Simmonds13182362953
Tim Martin12987882390
Network Information
Related Institutions (5)
University of Manchester
168K papers, 6.4M citations

95% related

University of Oxford
258.1K papers, 12.9M citations

95% related

University of Bristol
113.1K papers, 4.9M citations

94% related

University of Cambridge
282.2K papers, 14.4M citations

94% related

University College London
210.6K papers, 9.8M citations

93% related

Performance
Metrics
No. of papers from the Institution in previous years
YearPapers
2023195
2022734
20214,816
20204,927
20194,602
20184,132