scispace - formally typeset
Search or ask a question
Institution

University of Waterloo

EducationWaterloo, Ontario, Canada
About: University of Waterloo is a education organization based out in Waterloo, Ontario, Canada. It is known for research contribution in the topics: Population & Context (language use). The organization has 36093 authors who have published 93906 publications receiving 2948139 citations. The organization is also known as: UW & uwaterloo.


Papers
More filters
Journal ArticleDOI
TL;DR: The relationship between IoV and big data in vehicular environment is investigated, mainly on how IoV supports the transmission, storage, computing and computing of the big data, and in returnHow IoV benefits frombig data in terms of IoV characterization, performance evaluation andbig data assisted communication protocol design is investigated.
Abstract: As the rapid development of automotive telematics, modern vehicles are expected to be connected through heterogeneous radio access technologies and are able to exchange massive information with their surrounding environment. By significantly expanding the network scale and conducting both real time and long term information processing, the traditional Vehicular Ad- Hoc Networks U+0028 VANETs U+0029 are evolving to the Internet of Vehicles U+0028 IoV U+0029, which promises efficient and intelligent prospect for the future transportation system. On the other hand, vehicles are not only consuming but also generating a huge amount and enormous types of data, which are referred to as Big Data. In this article, we first investigate the relationship between IoV and big data in vehicular environment, mainly on how IoV supports the transmission, storage, computing of the big data, and in return how IoV benefits from big data in terms of IoV characterization, performance evaluation and big data assisted communication protocol design. We then investigate the application of IoV big data for autonomous vehicles. Finally the emerging issues of the big data enabled IoV are discussed.

463 citations

Proceedings ArticleDOI
07 Aug 2005
TL;DR: A general framework for learning from labeled and unlabeled data on a directed graph in which the structure of the graph including the directionality of the edges is considered, which generalizes the spectral clustering approach for undirected graphs.
Abstract: We propose a general framework for learning from labeled and unlabeled data on a directed graph in which the structure of the graph including the directionality of the edges is considered. The time complexity of the algorithm derived from this framework is nearly linear due to recently developed numerical techniques. In the absence of labeled instances, this framework can be utilized as a spectral clustering method for directed graphs, which generalizes the spectral clustering approach for undirected graphs. We have applied our framework to real-world web classification problems and obtained encouraging results.

463 citations

Journal ArticleDOI
TL;DR: Data suggest that increasing seatbelt use, reducing speed, and reducing the number and severity of driver-side impacts may prevent fatalities, and the specific safety needs of older and female drivers may need to be addressed separately from those of men and younger drivers.

462 citations

Journal ArticleDOI
TL;DR: In this article, the authors developed a new global tropical forest database consisting of 39 955 concurrent H and D measurements encompassing 283 sites in 22 tropical countries, and used this database to determine if H:D relationships differ by geographic region and forest type (wet to dry forests, including zones of tension where forest and savanna overlap).
Abstract: . Tropical tree height-diameter (H:D) relationships may vary by forest type and region making large-scale estimates of above-ground biomass subject to bias if they ignore these differences in stem allometry. We have therefore developed a new global tropical forest database consisting of 39 955 concurrent H and D measurements encompassing 283 sites in 22 tropical countries. Utilising this database, our objectives were: 1. to determine if H:D relationships differ by geographic region and forest type (wet to dry forests, including zones of tension where forest and savanna overlap). 2. to ascertain if the H:D relationship is modulated by climate and/or forest structural characteristics (e.g. stand-level basal area, A). 3. to develop H:D allometric equations and evaluate biases to reduce error in future local-to-global estimates of tropical forest biomass. Annual precipitation coefficient of variation (PV), dry season length (SD), and mean annual air temperature (TA) emerged as key drivers of variation in H:D relationships at the pantropical and region scales. Vegetation structure also played a role with trees in forests of a high A being, on average, taller at any given D. After the effects of environment and forest structure are taken into account, two main regional groups can be identified. Forests in Asia, Africa and the Guyana Shield all have, on average, similar H:D relationships, but with trees in the forests of much of the Amazon Basin and tropical Australia typically being shorter at any given D than their counterparts elsewhere. The region-environment-structure model with the lowest Akaike's information criterion and lowest deviation estimated stand-level H across all plots to within amedian −2.7 to 0.9% of the true value. Some of the plot-to-plot variability in H:D relationships not accounted for by this model could be attributed to variations in soil physical conditions. Other things being equal, trees tend to be more slender in the absence of soil physical constraints, especially at smaller D. Pantropical and continental-level models provided less robust estimates of H, especially when the roles of climate and stand structure in modulating H:D allometry were not simultaneously taken into account.

462 citations

Book
01 Jan 1997
TL;DR: Solid phase microextraction (SPME) as mentioned in this paper uses a small volume of sorbent dispersed typically on the surface of small fibres, to isolate and concentrate analytes from sample matrix.
Abstract: Solid Phase Microextraction (SPME) uses a small volume of sorbent dispersed typically on the surface of small fibres, to isolate and concentrate analytes from sample matrix. After contact with sample, analytes are absorbed or adsorbed by the fibre phase (depending on the nature of the coating) until an equilibrium is reached in the system. The amount of an analyteextracted by the coating at equilibrium is determined by the magnitude of the partition coefficient of the analyte between the sample matrix and the coating material. After the extraction step, the fibres are transferred, with the help of a syringe-like handling device, to analytical instrument, for separation and quantitation of target analytes. This technique integrates sampling, extraction and sample introduction and is a simple way of facilitating on-site monitoring. Applications of this technique include environmental monitoring, industrial hygiene, process monitoring, clinical, forensic, food, flavour, fragrance and drug analyses, in laboratory and on-site analysis.

462 citations


Authors

Showing all 36498 results

NameH-indexPapersCitations
John J.V. McMurray1781389184502
David A. Weitz1781038114182
David Taylor131246993220
Lei Zhang130231286950
Will J. Percival12947387752
Trevor Hastie124412202592
Stephen Mann12066955008
Xuan Zhang119153065398
Mark A. Tarnopolsky11564442501
Qiang Yang112111771540
Wei Zhang112118993641
Hans-Peter Seidel112121351080
Theodore S. Rappaport11249068853
Robert C. Haddon11257752712
David Zhang111102755118
Network Information
Related Institutions (5)
University of British Columbia
209.6K papers, 9.2M citations

94% related

University of Toronto
294.9K papers, 13.5M citations

94% related

McGill University
162.5K papers, 6.9M citations

94% related

University of Maryland, College Park
155.9K papers, 7.2M citations

94% related

University of Illinois at Urbana–Champaign
225.1K papers, 10.1M citations

93% related

Performance
Metrics
No. of papers from the Institution in previous years
YearPapers
20241
2023213
2022702
20215,360
20205,388
20195,200