scispace - formally typeset
Search or ask a question
Institution

University of Western Australia

EducationPerth, Western Australia, Australia
About: University of Western Australia is a education organization based out in Perth, Western Australia, Australia. It is known for research contribution in the topics: Population & Poison control. The organization has 29613 authors who have published 87405 publications receiving 3064466 citations. The organization is also known as: UWA & University of WA.


Papers
More filters
Journal ArticleDOI
TL;DR: OCBIL theory aims to develop an integrated series of hypotheses explaining the evolution and ecology of, and best conservation practices for, biota on very old, climatically buffered, infertile landscapes (OCBILs), and lays a foundation for future research and for better informed conservation management.
Abstract: OCBIL theory aims to develop an integrated series of hypotheses explaining the evolution and ecology of, and best conservation practices for, biota on very old, climatically buffered, infertile landscapes (OCBILs). Conventional theory for ecology and evolutionary and conservation biology has developed primarily from data on species and communities from young, often disturbed, fertile landscapes (YODFELs), mainly in the Northern Hemisphere. OCBILs are rare, but are prominent in the Southwest Australian Floristic Region, South Africa’s Greater Cape, and Venezuela’s Pantepui Highlands. They may have been more common globally before Pleistocene glaciations. Based on the premise that natural selection has favoured limited dispersability of sedentary organisms, OCBILs should have elevated persistence of lineages (Gondwanan Heritage Hypothesis) and long-lived individuals (Ultimate Self Hypothesis), high numbers of localised rare endemics and strongly differentiated population systems. To counter such natural fragmentation and inbreeding due to small population size, ecological, cytogenetic and genetic mechanisms selecting for the retention of heterozygosity should feature (the James Effect). The climatic stability of OCBILs should be paralleled by persistence of adjacent semi-arid areas, conducive to speciation (Semiarid Cradle Hypothesis). Special nutritional and other biological traits associated with coping with infertile lands should be evident, accentuated in plants, for example, through water-foraging strategies, symbioses, carnivory, pollination and parasitism. The uniquely flat landscapes of southwestern Australia have had prolonged presence of saline lakes along palaeoriver systems favouring evolution of accentuated tolerance to salinity. Lastly, unusual resiliences and vulnerabilities might be evident among OCBIL organisms, such as enhanced abilities to persist in small fragmented populations but great susceptibility to major soil disturbances. In those places where it is most pertinent, OCBIL theory hopefully lays a foundation for future research and for better informed conservation management.

511 citations

Journal ArticleDOI
TL;DR: It is shown how scleractinian corals up-regulate pH at their site of calcification such that internal changes are approximately one-half of those in ambient seawater, thereby increasing calcification rates at little additional energy cost.
Abstract: Rapidly rising levels of atmospheric CO2 are not only causing ocean warming, but also lowering seawater pH hence the carbonate saturation state of the oceans, on which many marine organisms depend to calcify their skeletons 1,2 . Using boron isotope systematics 3 , we show how scleractinian corals up-regulate pH at their site of calcification such that internal changes are approximately one-half of those in ambient seawater. This species-dependent pH-buffering capacity enables aragonitic corals to raise the saturation state of their calcifying medium, thereby increasing calcification rates at little additional energy cost. Using a model of pH regulation combined with abiotic calcification, we show that the enhanced kinetics of calcification owing to higher temperatures has the potential to counter the effects of ocean acidification. Up-regulation of pH, however, is not ubiquitous among calcifying organisms; those lacking this ability are likely to undergo severe declines in calcification as CO2 levels increase. The capacity to up-regulate pH is thus central to the resilience of calcifiers to ocean acidification, although the fate of zooxanthellate corals ultimately depends on the ability of both the photosymbionts and coral host to adapt to rapidly increasing ocean temperatures 4 . The response of calcifying organisms to the accelerating effects of declining seawater pH and increasing ocean temperatures is still poorly constrained 5 . Some studies 2,6 of warm-water zooxanthellaebearingcoralsshowahighdegreeofsensitivitytodecliningseawater pH. This has led to predictions of major reductions in coral calcification at atmospheric CO2 levels (p CO2 ) of450 atm (ref. 7) and, with the additional effects of global warming, the demise of coral reefs at560 atm

511 citations

Journal ArticleDOI
TL;DR: To protect crops from the losses caused by severe tospovirus outbreaks, continued vigilance is required to identify and characterize these emerging toSpoviruses, determine their impact on crop production, understand their epidemiologies and develop, evaluate and implement control measures to reduce their impactOn crop production.

510 citations

Journal ArticleDOI
TL;DR: The authors argue that lexical studies of personality structure suggest the existence of six major dimensions of personality: (I) Surgency, (II) Agreeableness, (III) Conscientiousness, (IV) Emotional Stabil...
Abstract: We argue that lexical studies of personality structure suggest the existence of six major dimensions of personality: (I) Surgency, (II) Agreeableness, (III) Conscientiousness, (IV) Emotional Stabil...

509 citations

Journal ArticleDOI
TL;DR: This study is the outcome, wherein the classification of Glomeromycota is revised by rejecting some new names on the grounds that they are founded in error and by synonymizing others that, while validly published, are not evidence-based.
Abstract: The publication of a large number of taxon names at all levels within the arbuscular mycorrhizal fungi (Glomeromycota) has resulted in conflicting systematic schemes and generated considerable confusion among biologists working with these important plant symbionts. A group of biologists with more than a century of collective experience in the systematics of Glomeromycota examined all available molecular–phylogenetic evidence within the framework of phylogenetic hypotheses, incorporating morphological characters when they were congruent. This study is the outcome, wherein the classification of Glomeromycota is revised by rejecting some new names on the grounds that they are founded in error and by synonymizing others that, while validly published, are not evidence-based. The proposed “consensus” will provide a framework for additional original research aimed at clarifying the evolutionary history of this important group of symbiotic fungi.

508 citations


Authors

Showing all 29972 results

NameH-indexPapersCitations
Nicholas G. Martin1921770161952
Cornelia M. van Duijn1831030146009
Kay-Tee Khaw1741389138782
Steven N. Blair165879132929
David W. Bates1591239116698
Mark E. Cooper1581463124887
David Cameron1541586126067
Stephen T. Holgate14287082345
Jeremy K. Nicholson14177380275
Xin Chen1391008113088
Graeme J. Hankey137844143373
David Stuart1361665103759
Joachim Heinrich136130976887
Carlos M. Duarte132117386672
David Smith1292184100917
Network Information
Related Institutions (5)
University of Queensland
155.7K papers, 5.7M citations

98% related

University of Melbourne
174.8K papers, 6.3M citations

97% related

University of Sydney
187.3K papers, 6.1M citations

97% related

University of British Columbia
209.6K papers, 9.2M citations

92% related

University of Manchester
168K papers, 6.4M citations

92% related

Performance
Metrics
No. of papers from the Institution in previous years
YearPapers
2023138
2022656
20215,967
20205,589
20195,452
20184,923