scispace - formally typeset
Search or ask a question
Institution

University of Wisconsin–Eau Claire

EducationEau Claire, Wisconsin, United States
About: University of Wisconsin–Eau Claire is a education organization based out in Eau Claire, Wisconsin, United States. It is known for research contribution in the topics: Poison control & Population. The organization has 1780 authors who have published 2690 publications receiving 93094 citations. The organization is also known as: UW-Eau Claire & University of Wisconsin-Eau Claire.


Papers
More filters
Journal ArticleDOI
22 Apr 2004-Nature
TL;DR: Reliable quantification of the leaf economics spectrum and its interaction with climate will prove valuable for modelling nutrient fluxes and vegetation boundaries under changing land-use and climate.
Abstract: Bringing together leaf trait data spanning 2,548 species and 175 sites we describe, for the first time at global scale, a universal spectrum of leaf economics consisting of key chemical, structural and physiological properties. The spectrum runs from quick to slow return on investments of nutrients and dry mass in leaves, and operates largely independently of growth form, plant functional type or biome. Categories along the spectrum would, in general, describe leaf economic variation at the global scale better than plant functional types, because functional types overlap substantially in their leaf traits. Overall, modulation of leaf traits and trait relationships by climate is surprisingly modest, although some striking and significant patterns can be seen. Reliable quantification of the leaf economics spectrum and its interaction with climate will prove valuable for modelling nutrient fluxes and vegetation boundaries under changing land-use and climate.

6,360 citations

Journal ArticleDOI
TL;DR: It is asserted that community ecology should return to an emphasis on four themes that are tied together by a two-step process: how the fundamental niche is governed by functional traits within the context of abiotic environmental gradients; and how the interaction between traits and fundamental niches maps onto the realized niche in the context a biotic interaction milieu.
Abstract: There is considerable debate about whether community ecology will ever produce general principles. We suggest here that this can be achieved but that community ecology has lost its way by focusing on pairwise species interactions independent of the environment. We assert that community ecology should return to an emphasis on four themes that are tied together by a two-step process: how the fundamental niche is governed by functional traits within the context of abiotic environmental gradients; and how the interaction between traits and fundamental niches maps onto the realized niche in the context of a biotic interaction milieu. We suggest this approach can create a more quantitative and predictive science that can more readily address issues of global change.

3,715 citations

Journal ArticleDOI
02 Apr 2015-Nature
TL;DR: A terrestrial assemblage database of unprecedented geographic and taxonomic coverage is analysed to quantify local biodiversity responses to land use and related changes and shows that in the worst-affected habitats, pressures reduce within-sample species richness by an average of 76.5%, total abundance by 39.5% and rarefaction-based richness by 40.3%.
Abstract: Human activities, especially conversion and degradation of habitats, are causing global biodiversity declines. How local ecological assemblages are responding is less clear--a concern given their importance for many ecosystem functions and services. We analysed a terrestrial assemblage database of unprecedented geographic and taxonomic coverage to quantify local biodiversity responses to land use and related changes. Here we show that in the worst-affected habitats, these pressures reduce within-sample species richness by an average of 76.5%, total abundance by 39.5% and rarefaction-based richness by 40.3%. We estimate that, globally, these pressures have already slightly reduced average within-sample richness (by 13.6%), total abundance (10.7%) and rarefaction-based richness (8.1%), with changes showing marked spatial variation. Rapid further losses are predicted under a business-as-usual land-use scenario; within-sample richness is projected to fall by a further 3.4% globally by 2100, with losses concentrated in biodiverse but economically poor countries. Strong mitigation can deliver much more positive biodiversity changes (up to a 1.9% average increase) that are less strongly related to countries' socioeconomic status.

2,532 citations

Journal ArticleDOI
TL;DR: Meta-analyses confirmed the incremental contributions of the PSF over and above those of socioeconomic status, standardized achievement, and high school GPA in predicting college outcomes.
Abstract: This study examines the relationship between psychosocial and study skill factors (PSFs) and college outcomes by meta-analyzing 109 studies. On the basis of educational persistence and motivational theory models, the PSFs were categorized into 9 broad constructs: achievement motivation, academic goals, institutional commitment, perceived social support, social involvement, academic self-efficacy, general self-concept, academic-related skills, and contextual influences. Two college outcomes were targeted: performance (cumulative grade point average; GPA) and persistence (retention). Meta-analyses indicate moderate relationships between retention and academic goals, academic self-efficacy, and academic-related skills (ps = .340, .359, and .366, respectively). The best predictors for GPA were academic self-efficacy and achievement motivation (ps = .496 and .303, respectively). Supplementary regression analyses confirmed the incremental contributions of the PSF over and above those of socioeconomic status, standardized achievement, and high school GPA in predicting college outcomes.

2,181 citations

Journal ArticleDOI
Jens Kattge1, Sandra Díaz2, Sandra Lavorel3, Iain Colin Prentice4, Paul Leadley5, Gerhard Bönisch1, Eric Garnier3, Mark Westoby4, Peter B. Reich6, Peter B. Reich7, Ian J. Wright4, Johannes H. C. Cornelissen8, Cyrille Violle3, Sandy P. Harrison4, P.M. van Bodegom8, Markus Reichstein1, Brian J. Enquist9, Nadejda A. Soudzilovskaia8, David D. Ackerly10, Madhur Anand11, Owen K. Atkin12, Michael Bahn13, Timothy R. Baker14, Dennis D. Baldocchi10, Renée M. Bekker15, Carolina C. Blanco16, Benjamin Blonder9, William J. Bond17, Ross A. Bradstock18, Daniel E. Bunker19, Fernando Casanoves20, Jeannine Cavender-Bares7, Jeffrey Q. Chambers21, F. S. Chapin22, Jérôme Chave3, David A. Coomes23, William K. Cornwell8, Joseph M. Craine24, B. H. Dobrin9, Leandro da Silva Duarte16, Walter Durka25, James J. Elser26, Gerd Esser27, Marc Estiarte28, William F. Fagan29, Jingyun Fang, Fernando Fernández-Méndez30, Alessandra Fidelis31, Bryan Finegan20, Olivier Flores32, H. Ford33, Dorothea Frank1, Grégoire T. Freschet34, Nikolaos M. Fyllas14, Rachael V. Gallagher4, Walton A. Green35, Alvaro G. Gutiérrez25, Thomas Hickler, Steven I. Higgins36, John G. Hodgson37, Adel Jalili, Steven Jansen38, Carlos Alfredo Joly39, Andrew J. Kerkhoff40, Don Kirkup41, Kaoru Kitajima42, Michael Kleyer43, Stefan Klotz25, Johannes M. H. Knops44, Koen Kramer, Ingolf Kühn16, Hiroko Kurokawa45, Daniel C. Laughlin46, Tali D. Lee47, Michelle R. Leishman4, Frederic Lens48, Tanja Lenz4, Simon L. Lewis14, Jon Lloyd14, Jon Lloyd49, Joan Llusià28, Frédérique Louault50, Siyan Ma10, Miguel D. Mahecha1, Peter Manning51, Tara Joy Massad1, Belinda E. Medlyn4, Julie Messier9, Angela T. Moles52, Sandra Cristina Müller16, Karin Nadrowski53, Shahid Naeem54, Ülo Niinemets55, S. Nöllert1, A. Nüske1, Romà Ogaya28, Jacek Oleksyn56, Vladimir G. Onipchenko57, Yusuke Onoda58, Jenny C. Ordoñez59, Gerhard E. Overbeck16, Wim A. Ozinga59, Sandra Patiño14, Susana Paula60, Juli G. Pausas60, Josep Peñuelas28, Oliver L. Phillips14, Valério D. Pillar16, Hendrik Poorter, Lourens Poorter59, Peter Poschlod61, Andreas Prinzing62, Raphaël Proulx63, Anja Rammig64, Sabine Reinsch65, Björn Reu1, Lawren Sack66, Beatriz Salgado-Negret20, Jordi Sardans28, Satomi Shiodera67, Bill Shipley68, Andrew Siefert69, Enio E. Sosinski70, Jean-François Soussana50, Emily Swaine71, Nathan G. Swenson72, Ken Thompson37, Peter E. Thornton73, Matthew S. Waldram74, Evan Weiher47, Michael T. White75, S. White11, S. J. Wright76, Benjamin Yguel3, Sönke Zaehle1, Amy E. Zanne77, Christian Wirth58 
Max Planck Society1, National University of Cordoba2, Centre national de la recherche scientifique3, Macquarie University4, University of Paris-Sud5, University of Western Sydney6, University of Minnesota7, VU University Amsterdam8, University of Arizona9, University of California, Berkeley10, University of Guelph11, Australian National University12, University of Innsbruck13, University of Leeds14, University of Groningen15, Universidade Federal do Rio Grande do Sul16, University of Cape Town17, University of Wollongong18, New Jersey Institute of Technology19, Centro Agronómico Tropical de Investigación y Enseñanza20, Lawrence Berkeley National Laboratory21, University of Alaska Fairbanks22, University of Cambridge23, Kansas State University24, Helmholtz Centre for Environmental Research - UFZ25, Arizona State University26, University of Giessen27, Autonomous University of Barcelona28, University of Maryland, College Park29, Universidad del Tolima30, University of São Paulo31, University of La Réunion32, University of York33, University of Sydney34, Harvard University35, Goethe University Frankfurt36, University of Sheffield37, University of Ulm38, State University of Campinas39, Kenyon College40, Royal Botanic Gardens41, University of Florida42, University of Oldenburg43, University of Nebraska–Lincoln44, Tohoku University45, Northern Arizona University46, University of Wisconsin–Eau Claire47, Naturalis48, James Cook University49, Institut national de la recherche agronomique50, Newcastle University51, University of New South Wales52, Leipzig University53, Columbia University54, Estonian University of Life Sciences55, Polish Academy of Sciences56, Moscow State University57, Kyushu University58, Wageningen University and Research Centre59, Spanish National Research Council60, University of Regensburg61, University of Rennes62, Université du Québec à Trois-Rivières63, Potsdam Institute for Climate Impact Research64, Technical University of Denmark65, University of California, Los Angeles66, Hokkaido University67, Université de Sherbrooke68, Syracuse University69, Empresa Brasileira de Pesquisa Agropecuária70, University of Aberdeen71, Michigan State University72, Oak Ridge National Laboratory73, University of Leicester74, Utah State University75, Smithsonian Institution76, University of Missouri77
01 Sep 2011
TL;DR: TRY as discussed by the authors is a global database of plant traits, including morphological, anatomical, physiological, biochemical and phenological characteristics of plants and their organs, which can be used for a wide range of research from evolutionary biology, community and functional ecology to biogeography.
Abstract: Plant traits – the morphological, anatomical, physiological, biochemical and phenological characteristics of plants and their organs – determine how primary producers respond to environmental factors, affect other trophic levels, influence ecosystem processes and services and provide a link from species richness to ecosystem functional diversity. Trait data thus represent the raw material for a wide range of research from evolutionary biology, community and functional ecology to biogeography. Here we present the global database initiative named TRY, which has united a wide range of the plant trait research community worldwide and gained an unprecedented buy-in of trait data: so far 93 trait databases have been contributed. The data repository currently contains almost three million trait entries for 69 000 out of the world's 300 000 plant species, with a focus on 52 groups of traits characterizing the vegetative and regeneration stages of the plant life cycle, including growth, dispersal, establishment and persistence. A first data analysis shows that most plant traits are approximately log-normally distributed, with widely differing ranges of variation across traits. Most trait variation is between species (interspecific), but significant intraspecific variation is also documented, up to 40% of the overall variation. Plant functional types (PFTs), as commonly used in vegetation models, capture a substantial fraction of the observed variation – but for several traits most variation occurs within PFTs, up to 75% of the overall variation. In the context of vegetation models these traits would better be represented by state variables rather than fixed parameter values. The improved availability of plant trait data in the unified global database is expected to support a paradigm shift from species to trait-based ecology, offer new opportunities for synthetic plant trait research and enable a more realistic and empirically grounded representation of terrestrial vegetation in Earth system models.

2,017 citations


Authors

Showing all 1821 results

NameH-indexPapersCitations
Donald G. Truhlar1651518157965
Xi Chen105154752533
Christopher J. Cramer9356550075
Rustem F. Ismagilov7724624741
Thomas R. Zentall5536411102
Douglas R. Powell5541113222
William E. Antholine532269476
Travis Thompson511787565
Gianluigi Veglia512117417
Corey L. M. Keyes5113425747
Feimeng Zhou491627410
Craig R. Carter4712314069
Charlie S. Bristow461256541
Eric S. Boyd461516188
Jennifer J. Muehlenkamp461108919
Network Information
Related Institutions (5)
Kent State University
24.6K papers, 720.3K citations

88% related

University of North Carolina at Greensboro
13.7K papers, 456.2K citations

87% related

University of Wisconsin–Milwaukee
28K papers, 936.4K citations

87% related

East Carolina University
22.3K papers, 635K citations

87% related

University of Denver
13.8K papers, 478.3K citations

86% related

Performance
Metrics
No. of papers from the Institution in previous years
YearPapers
202310
202245
2021130
2020122
2019103
2018107