scispace - formally typeset
Search or ask a question
Institution

University of Wisconsin-Madison

EducationMadison, Wisconsin, United States
About: University of Wisconsin-Madison is a education organization based out in Madison, Wisconsin, United States. It is known for research contribution in the topics: Population & Poison control. The organization has 108707 authors who have published 237594 publications receiving 11883575 citations.
Topics: Population, Poison control, Gene, Health care, Galaxy


Papers
More filters
Journal ArticleDOI
TL;DR: A new freshwater lake phylogeny constructed from all published 16S rRNA gene sequences from lake epilimnia is presented and a unifying vocabulary to discuss freshwater taxa is proposed, providing a coherent framework for future studies.
Abstract: Freshwater bacteria are at the hub of biogeochemical cycles and control water quality in lakes. Despite this, little is known about the identity and ecology of functionally significant lake bacteria. Molecular studies have identified many abundant lake bacteria, but there is a large variation in the taxonomic or phylogenetic breadths among the methods used for this exploration. Because of this, an inconsistent and overlapping naming structure has developed for freshwater bacteria, creating a significant obstacle to identifying coherent ecological traits among these groups. A discourse that unites the field is sorely needed. Here we present a new freshwater lake phylogeny constructed from all published 16S rRNA gene sequences from lake epilimnia and propose a unifying vocabulary to discuss freshwater taxa. With this new vocabulary in place, we review the current information on the ecology, ecophysiology, and distribution of lake bacteria and highlight newly identified phylotypes. In the second part of our review, we conduct meta-analyses on the compiled data, identifying distribution patterns for bacterial phylotypes among biomes and across environmental gradients in lakes. We conclude by emphasizing the role that this review can play in providing a coherent framework for future studies.

1,230 citations

Journal ArticleDOI
05 Oct 2005-JAMA
TL;DR: Therapy to reduce volume overload during hospitalization for heart failure led to marked improvement in signs and symptoms of elevated filling pressures with or without the PAC, which reached significance for the time trade-off at all time points after randomization.
Abstract: Context Pulmonary artery catheters (PACs) have been used to guide therapy in multiple settings, but recent studies have raised concerns that PACs may lead to increased mortality in hospitalized patients. Objective To determine whether PAC use is safe and improves clinical outcomes in patients hospitalized with severe symptomatic and recurrent heart failure. Design, setting, and participants The Evaluation Study of Congestive Heart Failure and Pulmonary Artery Catheterization Effectiveness (ESCAPE) was a randomized controlled trial of 433 patients at 26 sites conducted from January 18, 2000, to November 17, 2003. Patients were assigned to receive therapy guided by clinical assessment and a PAC or clinical assessment alone. The target in both groups was resolution of clinical congestion, with additional PAC targets of a pulmonary capillary wedge pressure of 15 mm Hg and a right atrial pressure of 8 mm Hg. Medications were not specified, but inotrope use was explicitly discouraged. Main outcome measures The primary end point was days alive out of the hospital during the first 6 months, with secondary end points of exercise, quality of life, biochemical, and echocardiographic changes. Results Severity of illness was reflected by the following values: average left ventricular ejection fraction, 19%; systolic blood pressure, 106 mm Hg; sodium level, 137 mEq/L; urea nitrogen, 35 mg/dL (12.40 mmol/L); and creatinine, 1.5 mg/dL (132.6 micromol/L). Therapy in both groups led to substantial reduction in symptoms, jugular venous pressure, and edema. Use of the PAC did not significantly affect the primary end point of days alive and out of the hospital during the first 6 months (133 days vs 135 days; hazard ratio [HR], 1.00 [95% confidence interval {CI}, 0.82-1.21]; P = .99), mortality (43 patients [10%] vs 38 patients [9%]; odds ratio [OR], 1.26 [95% CI, 0.78-2.03]; P = .35), or the number of days hospitalized (8.7 vs 8.3; HR, 1.04 [95% CI, 0.86-1.27]; P = .67). In-hospital adverse events were more common among patients in the PAC group (47 [21.9%] vs 25 [11.5%]; P = .04). There were no deaths related to PAC use, and no difference for in-hospital plus 30-day mortality (10 [4.7%] vs 11 [5.0%]; OR, 0.97 [95% CI, 0.38-2.22]; P = .97). Exercise and quality of life end points improved in both groups with a trend toward greater improvement with the PAC, which reached significance for the time trade-off at all time points after randomization. Conclusions Therapy to reduce volume overload during hospitalization for heart failure led to marked improvement in signs and symptoms of elevated filling pressures with or without the PAC. Addition of the PAC to careful clinical assessment increased anticipated adverse events, but did not affect overall mortality and hospitalization. Future trials should test noninvasive assessments with specific treatment strategies that could be used to better tailor therapy for both survival time and survival quality as valued by patients.

1,229 citations

Journal ArticleDOI
TL;DR: In this article, an improved method for quantifying linoleic acid (CLA) in food was developed, which was used to produce a data base of more than 90 food items including meat, poultry, seafood, dairy products, plant oils, and infant and processed foods.

1,228 citations

Journal ArticleDOI
TL;DR: Palladium oxidase catalysis combines the versatility of Pd(II)-mediated oxidation of organic substrates with dioxygen-coupled oxidation of the reduced palladium catalyst to enable a broad range of selective aerobic oxidation reactions.
Abstract: Selective aerobic oxidation of organic molecules is a fundamental and practical challenge in modern chemistry. Effective solutions to this problem must overcome the intrinsic reactivity and selectivity challenges posed by the chemistry of molecular oxygen, and they must find application in diverse classes of oxidation reactions. Palladium oxidase catalysis combines the versatility of Pd(II)-mediated oxidation of organic substrates with dioxygen-coupled oxidation of the reduced palladium catalyst to enable a broad range of selective aerobic oxidation reactions. Recent developments revealed that cocatalysts (e.g. Cu(II), polyoxometalates, and benzoquinone) are not essential for efficient oxidation of Pd(0) by molecular oxygen. Oxidatively stable ligands play an important role in these reactions by minimizing catalyst decomposition, promoting the direct reaction between palladium and dioxygen, modulating organic substrate reactivity and permitting asymmetric catalysis.

1,227 citations

Journal ArticleDOI
TL;DR: Current understanding of the Ub/26S proteasome pathway in plants is described at the biochemical, genomic, and genetic levels, using Arabidopsis thaliana as the model, showing that this pathway is one of the most elaborate regulatory mechanisms in plants.
Abstract: Much of plant physiology, growth, and development is controlled by the selective removal of short-lived regulatory proteins. One important proteolytic pathway involves the small protein ubiquitin (Ub) and the 26S proteasome, a 2-MDa protease complex. In this pathway, Ub is attached to proteins destined for degradation; the resulting Ub-protein conjugates are then recognized and catabolized by the 26S proteasome. This review describes our current understanding of the pathway in plants at the biochemical, genomic, and genetic levels, using Arabidopsis thaliana as the model. Collectively, these analyses show that the Ub/26S proteasome pathway is one of the most elaborate regulatory mechanisms in plants. The genome of Arabidopsis encodes more than 1400 (or >5% of the proteome) pathway components that can be connected to almost all aspects of its biology. Most pathway components participate in the Ub-ligation reactions that choose with exquisite specificity which proteins should be ubiquitinated. What remains to be determined is the identity of the targets, which may number in the thousands in plants.

1,227 citations


Authors

Showing all 109671 results

NameH-indexPapersCitations
Eric S. Lander301826525976
Ronald C. Kessler2741332328983
Gordon H. Guyatt2311620228631
Yi Chen2174342293080
David Miller2032573204840
Robert M. Califf1961561167961
Ronald Klein1941305149140
Joan Massagué189408149951
Jens K. Nørskov184706146151
Terrie E. Moffitt182594150609
H. S. Chen1792401178529
Ramachandran S. Vasan1721100138108
Masayuki Yamamoto1711576123028
Avshalom Caspi170524113583
Jiawei Han1681233143427
Network Information
Related Institutions (5)
University of Washington
305.5K papers, 17.7M citations

96% related

University of Pennsylvania
257.6K papers, 14.1M citations

96% related

University of California, San Diego
204.5K papers, 12.3M citations

95% related

University of Michigan
342.3K papers, 17.6M citations

95% related

Stanford University
320.3K papers, 21.8M citations

95% related

Performance
Metrics
No. of papers from the Institution in previous years
YearPapers
2023333
20221,390
202110,148
20209,483
20199,278
20188,546