scispace - formally typeset
Search or ask a question
Institution

University of Wisconsin-Madison

EducationMadison, Wisconsin, United States
About: University of Wisconsin-Madison is a education organization based out in Madison, Wisconsin, United States. It is known for research contribution in the topics: Population & Gene. The organization has 108707 authors who have published 237594 publications receiving 11883575 citations.


Papers
More filters
Journal ArticleDOI
24 Jul 2003-Nature
TL;DR: The integration of thin films of block copolymer with advanced lithographic techniques to induce epitaxial self-assembly of domains are demonstrated and illustrate how hybrid strategies to nanofabrication allow for molecular level control in existing manufacturing processes.
Abstract: Parallel processes for patterning densely packed nanometre-scale structures are critical for many diverse areas of nanotechnology. Thin films of diblock copolymers can self-assemble into ordered periodic structures at the molecular scale (approximately 5 to 50 nm), and have been used as templates to fabricate quantum dots, nanowires, magnetic storage media, nanopores and silicon capacitors. Unfortunately, perfect periodic domain ordering can only be achieved over micrometre-scale areas at best and defects exist at the edges of grain boundaries. These limitations preclude the use of block-copolymer lithography for many advanced applications. Graphoepitaxy, in-plane electric fields, temperature gradients, and directional solidification have also been demonstrated to induce orientation or long-range order with varying degrees of success. Here we demonstrate the integration of thin films of block copolymer with advanced lithographic techniques to induce epitaxial self-assembly of domains. The resulting patterns are defect-free, are oriented and registered with the underlying substrate and can be created over arbitrarily large areas. These structures are determined by the size and quality of the lithographically defined surface pattern rather than by the inherent limitations of the self-assembly process. Our results illustrate how hybrid strategies to nanofabrication allow for molecular level control in existing manufacturing processes.

1,665 citations

Journal ArticleDOI
TL;DR: Findings support the theory of life-course-persistent and adolescence-limited antisocial behavior but also extend it, and recommend intervention with all aggressive children and with all delinquent adolescents, to prevent a variety of maladjustments in adult life.
Abstract: This article reports a comparison on outcomes of 26-year-old males who were defined several years ago in the Dunedin longitudinal study as exhibiting childhood-onset versus adolescent-onset antisocial behavior and who were indistinguishable on delinquent offending in adolescence. Previous studies of these groups in childhood and adolescence showed that childhood-onset delinquents had inadequate parenting, neurocognitive problems, undercontrolled temperament, severe hyperactivity, psychopathic personality traits, and violent behavior. Adolescent-onset delinquents were not distinguished by these features. Here followed to age 26 years, the childhood-onset delinquents were the most elevated on psychopathic personality traits, mental-health problems, substance dependence, numbers of children, financial problems, work problems, and drug-related and violent crime, including violence against women and children. The adolescent-onset delinquents at 26 years were less extreme but elevated on impulsive personality traits, mental-health problems, substance dependence, financial problems, and property offenses. A third group of men who had been aggressive as children but not very delinquent as adolescents emerged as low-level chronic offenders who were anxious, depressed, socially isolated, and had financial and work problems. These findings support the theory of life-course-persistent and adolescence-limited antisocial behavior but also extend it. Findings recommend intervention with all aggressive children and with all delinquent adolescents, to prevent a variety of maladjustments in adult life.

1,663 citations

Journal ArticleDOI
TL;DR: A new kind of graph to represent programs is introduced, called a system dependence graph, which extends previous dependence representations to incorporate collections of procedures (with procedure calls) rather than just monolithic programs.
Abstract: The notion of a program slice, originally introduced by Mark Weiser, is useful in program debugging, automatic parallelization, and program integration. A slice of a program is taken with respect to a program point p and a variable x; the slice consists of all statements of the program that might affect the value of x at point p. This paper concerns the problem of interprocedural slicing—generating a slice of an entire program, where the slice crosses the boundaries of procedure calls. To solve this problem, we introduce a new kind of graph to represent programs, called a system dependence graph, which extends previous dependence representations to incorporate collections of procedures (with procedure calls) rather than just monolithic programs. Our main result is an algorithm for interprocedural slicing that uses the new representation. (It should be noted that our work concerns a somewhat restricted kind of slice: rather than permitting a program to b e sliced with respect to program point p and an arbitrary variable, a slice must be taken with respect to a variable that is defined or used at p.)The chief difficulty in interprocedural slicing is correctly accounting for the calling context of a called procedure. To handle this problem, system dependence graphs include some data dependence edges that represent transitive dependences due to the effects of procedure calls, in addition to the conventional direct-dependence edges. These edges are constructed with the aid of an auxiliary structure that represents calling and parameter-linkage relationships. This structure takes the form of an attribute grammar. The step of computing the required transitive-dependence edges is reduced to the construction of the subordinate characteristic graphs for the grammar's nonterminals.

1,663 citations

Journal ArticleDOI
TL;DR: A key development in the economic theory of index numbers has been the demonstration that many index number formulas can be explicitly derived from particular aggregator functions as mentioned in this paper, which provides a powerful new basis for selecting an index number procedure.
Abstract: Early in this century economists began to give serious attention to making comparisons using index number techniques. There was extensive debate as to which index number formulas were the most appropriate for carrying out comparisons.1 The debate was extensive in no small part due to the lack of agreement as to criteria for preferring one formula over another. In recent decades there has been a resurgence of interest in index numbers, resulting from discoveries that the properties of index numbers can be directly related to the properties of the underlying aggregator functions that they represent. The underlying functions - production functions, utility functions, etc. - are the building blocks of economic theory, and the study of relationships between these functions and index number formulas has been referred to by Samuelson and Swamy (I974) as the economic theory of index numbers.2 A key development in the economic theory of index numbers has been the demonstration that numerous index number formulas can be explicitly derived from particular aggregator functions. This development provides a powerful new basis for selecting an index number procedure. Rather than starting the selection process with a number of plausible index number formulas, one can specify an aggregator function with desirable properties and derive the corresponding index number procedure. The resulting index is termed exact for that particular aggregator function. Diewert (I976) makes a strong case for limiting the consideration of aggregator functions to those which are flexible, i.e. those which can provide a second order approximation to an arbitrary aggregator function. He has termed index numbers that are exact for flexible aggregator functions 'superlative '. There are two superlative index numbers that are of particular interest - the Fisher Ideal index and the Tornqvist-Theil-translog index. Fisher (I 922) dubbed the following index Ideal since it best satisfied his several criteria for choosing among index numbers:

1,660 citations

Journal ArticleDOI
James J. Lee1, Robbee Wedow2, Aysu Okbay3, Edward Kong4, Omeed Maghzian4, Meghan Zacher4, Tuan Anh Nguyen-Viet5, Peter Bowers4, Julia Sidorenko6, Julia Sidorenko7, Richard Karlsson Linnér8, Richard Karlsson Linnér3, Mark Alan Fontana5, Mark Alan Fontana9, Tushar Kundu5, Chanwook Lee4, Hui Li4, Ruoxi Li5, Rebecca Royer5, Pascal Timshel10, Pascal Timshel11, Raymond K. Walters4, Raymond K. Walters12, Emily A. Willoughby1, Loic Yengo7, Maris Alver6, Yanchun Bao13, David W. Clark14, Felix R. Day15, Nicholas A. Furlotte, Peter K. Joshi16, Peter K. Joshi14, Kathryn E. Kemper7, Aaron Kleinman, Claudia Langenberg15, Reedik Mägi6, Joey W. Trampush5, Shefali S. Verma17, Yang Wu7, Max Lam, Jing Hua Zhao15, Zhili Zheng18, Zhili Zheng7, Jason D. Boardman2, Harry Campbell14, Jeremy Freese19, Kathleen Mullan Harris20, Caroline Hayward14, Pamela Herd21, Pamela Herd13, Meena Kumari13, Todd Lencz22, Todd Lencz23, Jian'an Luan15, Anil K. Malhotra22, Anil K. Malhotra23, Andres Metspalu6, Lili Milani6, Ken K. Ong15, John R. B. Perry15, David J. Porteous14, Marylyn D. Ritchie17, Melissa C. Smart14, Blair H. Smith24, Joyce Y. Tung, Nicholas J. Wareham15, James F. Wilson14, Jonathan P. Beauchamp25, Dalton Conley26, Tõnu Esko6, Steven F. Lehrer27, Steven F. Lehrer28, Steven F. Lehrer29, Patrik K. E. Magnusson30, Sven Oskarsson31, Tune H. Pers10, Tune H. Pers11, Matthew R. Robinson7, Matthew R. Robinson32, Kevin Thom33, Chelsea Watson5, Christopher F. Chabris17, Michelle N. Meyer17, David Laibson4, Jian Yang7, Magnus Johannesson34, Philipp Koellinger8, Philipp Koellinger3, Patrick Turley12, Patrick Turley4, Peter M. Visscher7, Daniel J. Benjamin5, Daniel J. Benjamin29, David Cesarini29, David Cesarini33 
TL;DR: A joint (multi-phenotype) analysis of educational attainment and three related cognitive phenotypes generates polygenic scores that explain 11–13% of the variance ineducational attainment and 7–10% ofthe variance in cognitive performance, which substantially increases the utility ofpolygenic scores as tools in research.
Abstract: Here we conducted a large-scale genetic association analysis of educational attainment in a sample of approximately 1.1 million individuals and identify 1,271 independent genome-wide-significant SNPs. For the SNPs taken together, we found evidence of heterogeneous effects across environments. The SNPs implicate genes involved in brain-development processes and neuron-to-neuron communication. In a separate analysis of the X chromosome, we identify 10 independent genome-wide-significant SNPs and estimate a SNP heritability of around 0.3% in both men and women, consistent with partial dosage compensation. A joint (multi-phenotype) analysis of educational attainment and three related cognitive phenotypes generates polygenic scores that explain 11-13% of the variance in educational attainment and 7-10% of the variance in cognitive performance. This prediction accuracy substantially increases the utility of polygenic scores as tools in research.

1,658 citations


Authors

Showing all 109671 results

NameH-indexPapersCitations
Eric S. Lander301826525976
Ronald C. Kessler2741332328983
Gordon H. Guyatt2311620228631
Yi Chen2174342293080
David Miller2032573204840
Robert M. Califf1961561167961
Ronald Klein1941305149140
Joan Massagué189408149951
Jens K. Nørskov184706146151
Terrie E. Moffitt182594150609
H. S. Chen1792401178529
Ramachandran S. Vasan1721100138108
Masayuki Yamamoto1711576123028
Avshalom Caspi170524113583
Jiawei Han1681233143427
Network Information
Related Institutions (5)
University of Washington
305.5K papers, 17.7M citations

96% related

University of Pennsylvania
257.6K papers, 14.1M citations

96% related

University of California, San Diego
204.5K papers, 12.3M citations

95% related

University of Michigan
342.3K papers, 17.6M citations

95% related

Stanford University
320.3K papers, 21.8M citations

95% related

Performance
Metrics
No. of papers from the Institution in previous years
YearPapers
2023333
20221,391
202110,151
20209,483
20199,278
20188,546