scispace - formally typeset
Search or ask a question
Institution

University of Wisconsin-Madison

EducationMadison, Wisconsin, United States
About: University of Wisconsin-Madison is a education organization based out in Madison, Wisconsin, United States. It is known for research contribution in the topics: Population & Poison control. The organization has 108707 authors who have published 237594 publications receiving 11883575 citations.
Topics: Population, Poison control, Gene, Health care, Galaxy


Papers
More filters
Journal ArticleDOI
01 Sep 2001-Ecology
TL;DR: The relationship between species richness and productivity has been extensively studied in the literature as discussed by the authors, with a focus on positive, negative, or curvilinear relationships between productivity and species diversity.
Abstract: Understanding the relationship between species richness and productivity is fundamental to the management and preservation of biodiversity. Yet despite years of study and intense theoretical interest, this relationship remains controversial. Here, we present the results of a literature survey in which we examined the relationship between species richness and productivity in 171 published studies. We extracted the raw data from published tables and graphs and subjected these data to a standardized analysis, using ordinary least-squares (OLS) regression and generalized linear-model (GLIM) regression to test for significant positive, negative, or curvilinear relationships between productivity and species diversity. If the relationship was curvilinear, we tested whether the maximum (or minimum) of the curve occurred within the range of productivity values observed (i.e., was there evidence of a hump?). A meta-analysis conducted on the distribution of standardized quadratic regression coefficients showed that ...

1,572 citations

Journal ArticleDOI
07 Jun 2012-Nature
TL;DR: Evidence that the global ecosystem as a whole is approaching a planetary-scale critical transition as a result of human influence is reviewed, highlighting the need to improve biological forecasting by detecting early warning signs of critical transitions.
Abstract: There is evidence that human influence may be forcing the global ecosystem towards a rapid, irreversible, planetary-scale shift into a state unknown in human experience. Most forecasts of how the biosphere will change in response to human activity are rooted in projecting trajectories. Such models tend not anticipate critical transitions or tipping points, although recent work indicates a high probability of those taking place. And, at a local scale, ecosystems are known to shift abruptly between states when critical thresholds are passed. These authors review the evidence from across ecology and palaeontology that such a transition is being approached on the scale of the entire biosphere. They go on to suggest how biological forecasting might be improved to allow us to detect early warning signs of critical transitions on a global, as well as local, scale. Localized ecological systems are known to shift abruptly and irreversibly from one state to another when they are forced across critical thresholds. Here we review evidence that the global ecosystem as a whole can react in the same way and is approaching a planetary-scale critical transition as a result of human influence. The plausibility of a planetary-scale ‘tipping point’ highlights the need to improve biological forecasting by detecting early warning signs of critical transitions on global as well as local scales, and by detecting feedbacks that promote such transitions. It is also necessary to address root causes of how humans are forcing biological changes.

1,571 citations

Journal ArticleDOI
Georges Aad1, Brad Abbott2, Jalal Abdallah3, Ovsat Abdinov4  +5117 moreInstitutions (314)
TL;DR: A measurement of the Higgs boson mass is presented based on the combined data samples of the ATLAS and CMS experiments at the CERN LHC in the H→γγ and H→ZZ→4ℓ decay channels.
Abstract: A measurement of the Higgs boson mass is presented based on the combined data samples of the ATLAS and CMS experiments at the CERN LHC in the H→γγ and H→ZZ→4l decay channels. The results are obtained from a simultaneous fit to the reconstructed invariant mass peaks in the two channels and for the two experiments. The measured masses from the individual channels and the two experiments are found to be consistent among themselves. The combined measured mass of the Higgs boson is mH=125.09±0.21 (stat)±0.11 (syst) GeV.

1,567 citations

Journal ArticleDOI
TL;DR: The purpose of this review is to examine the various effects of low- molecular-weight electrolytes on the associations and interactions of proteins and nucleic acids through general electrostatic effects rather than chemical effects of particular ions.
Abstract: The purpose of this review is to examine the various effects of low- molecular-weight electrolytes on the associations and interactions of proteins and nucleic acids. Our primary interest is in general electrostatic effects, rather than chemical effects (specific interactions) of particular ions (e.g. transition metals, protons). We consider those interactions in which a variation in salt concentration has a significant effect on the macromolecular equilibrium, and analyse the effects of salt in these situations in terms of (i) direct participation of ions in the biopolymer reaction, (ii) Debye—Huckel screening by salt ions of the charge interactions on the biopolymers, and (iii) the reduction in water activity brought about at high salt concentrations.

1,566 citations

Journal ArticleDOI
08 Jan 2014-Neuron
TL;DR: This Perspective considers the rationale and evidence for the synaptic homeostasis hypothesis (SHY), and points to open issues related to sleep and plasticity.

1,565 citations


Authors

Showing all 109671 results

NameH-indexPapersCitations
Eric S. Lander301826525976
Ronald C. Kessler2741332328983
Gordon H. Guyatt2311620228631
Yi Chen2174342293080
David Miller2032573204840
Robert M. Califf1961561167961
Ronald Klein1941305149140
Joan Massagué189408149951
Jens K. Nørskov184706146151
Terrie E. Moffitt182594150609
H. S. Chen1792401178529
Ramachandran S. Vasan1721100138108
Masayuki Yamamoto1711576123028
Avshalom Caspi170524113583
Jiawei Han1681233143427
Network Information
Related Institutions (5)
University of Washington
305.5K papers, 17.7M citations

96% related

University of Pennsylvania
257.6K papers, 14.1M citations

96% related

University of California, San Diego
204.5K papers, 12.3M citations

95% related

University of Michigan
342.3K papers, 17.6M citations

95% related

Stanford University
320.3K papers, 21.8M citations

95% related

Performance
Metrics
No. of papers from the Institution in previous years
YearPapers
2023333
20221,390
202110,148
20209,483
20199,278
20188,546