scispace - formally typeset
Search or ask a question

Showing papers by "University of Wisconsin–Milwaukee published in 2015"


Journal ArticleDOI
TL;DR: A broadened view of service innovation is offered--one grounded in service-dominant logic--that transcends the tangible--intangible and producer--consumer divides that have plagued extant research in this area.
Abstract: In this article, we offer a broadened view of service innovation--one grounded in service-dominant logic--that transcends the tangible--intangible and producer--consumer divides that have plagued extant research in this area. Such a broadened conceptualization of service innovation emphasizes (1) innovation as a collaborative process occurring in an actor-to-actor (A2A) network, (2) service as the application of specialized competences for the benefit of another actor or the self and as the basis of all exchange, (3) the generativity unleashed by increasing resource liquefaction and resource density, and (4) resource integration as the fundamental way to innovate. Building on these core themes, we offer a tripartite framework of service innovation: (1) service ecosystems, as emergent A2A structures actors create and recreate through their effectual actions and which offer an organizing logic for the actors to exchange service and cocreate value; (2) service platforms, which enhance the efficiency and effectiveness of service exchange by liquefying resources and increasing resource density (facilitating easy access to appropriate resource bundles) and thereby serve as the venue for innovation; and (3) value cocreation, which views value as cocreated by the service offer(er) and the service beneficiary (e.g., customer) through resource integration and indicate the need for mechanisms to support the underlying roles and processes. In discussing these components, we consider the role of information technology--both as an operand resource and as an operant resource--and then examine the implications for research and practice in digitally enabled service innovation.

1,447 citations


Journal ArticleDOI
TL;DR: It is found that the models designed specifically for salient object detection generally work better than models in closely related areas, which provides a precise definition and suggests an appropriate treatment of this problem that distinguishes it from other problems.
Abstract: We extensively compare, qualitatively and quantitatively, 41 state-of-the-art models (29 salient object detection, 10 fixation prediction, 1 objectness, and 1 baseline) over seven challenging data sets for the purpose of benchmarking salient object detection and segmentation methods. From the results obtained so far, our evaluation shows a consistent rapid progress over the last few years in terms of both accuracy and running time. The top contenders in this benchmark significantly outperform the models identified as the best in the previous benchmark conducted three years ago. We find that the models designed specifically for salient object detection generally work better than models in closely related areas, which in turn provides a precise definition and suggests an appropriate treatment of this problem that distinguishes it from other problems. In particular, we analyze the influences of center bias and scene complexity in model performance, which, along with the hard cases for the state-of-the-art models, provide useful hints toward constructing more challenging large-scale data sets and better saliency models. Finally, we propose probable solutions for tackling several open problems, such as evaluation scores and data set bias, which also suggest future research directions in the rapidly growing field of salient object detection.

1,372 citations


Journal ArticleDOI
J. Aasi1, J. Abadie1, B. P. Abbott1, Richard J. Abbott1  +884 moreInstitutions (98)
TL;DR: In this paper, the authors review the performance of the LIGO instruments during this epoch, the work done to characterize the detectors and their data, and the effect that transient and continuous noise artefacts have on the sensitivity of the detectors to a variety of astrophysical sources.
Abstract: In 2009–2010, the Laser Interferometer Gravitational-Wave Observatory (LIGO) operated together with international partners Virgo and GEO600 as a network to search for gravitational waves (GWs) of astrophysical origin. The sensitivity of these detectors was limited by a combination of noise sources inherent to the instrumental design and its environment, often localized in time or frequency, that couple into the GW readout. Here we review the performance of the LIGO instruments during this epoch, the work done to characterize the detectors and their data, and the effect that transient and continuous noise artefacts have on the sensitivity of LIGO to a variety of astrophysical sources.

1,266 citations


Journal ArticleDOI
TL;DR: In this article, a catalog of modified theories of gravity for which strong-field predictions have been computed and contrasted to Einstein's theory is presented, and the current understanding of the structure and dynamics of compact objects in these theories is summarized.
Abstract: One century after its formulation, Einstein's general relativity (GR) has made remarkable predictions and turned out to be compatible with all experimental tests. Most of these tests probe the theory in the weak-field regime, and there are theoretical and experimental reasons to believe that GR should be modified when gravitational fields are strong and spacetime curvature is large. The best astrophysical laboratories to probe strong-field gravity are black holes and neutron stars, whether isolated or in binary systems. We review the motivations to consider extensions of GR. We present a (necessarily incomplete) catalog of modified theories of gravity for which strong-field predictions have been computed and contrasted to Einstein's theory, and we summarize our current understanding of the structure and dynamics of compact objects in these theories. We discuss current bounds on modified gravity from binary pulsar and cosmological observations, and we highlight the potential of future gravitational wave measurements to inform us on the behavior of gravity in the strong-field regime.

1,066 citations


Journal ArticleDOI
TL;DR: This work describes the LALInference software library for Bayesian parameter estimation of compact binary signals, which builds on several previous methods to provide a well-tested toolkit which has already been used for several studies.
Abstract: The Advanced LIGO and Advanced Virgo gravitational-wave (GW) detectors will begin operation in the coming years, with compact binary coalescence events a likely source for the first detections. The gravitational waveforms emitted directly encode information about the sources, including the masses and spins of the compact objects. Recovering the physical parameters of the sources from the GW observations is a key analysis task. This work describes the LALInference software library for Bayesian parameter estimation of compact binary signals, which builds on several previous methods to provide a well-tested toolkit which has already been used for several studies. We show that our implementation is able to correctly recover the parameters of compact binary signals from simulated data from the advanced GW detectors. We demonstrate this with a detailed comparison on three compact binary systems: a binary neutron star, a neutron star–black hole binary and a binary black hole, where we show a cross comparison of results obtained using three independent sampling algorithms. These systems were analyzed with nonspinning, aligned spin and generic spin configurations respectively, showing that consistent results can be obtained even with the full 15-dimensional parameter space of the generic spin configurations. We also demonstrate statistically that the Bayesian credible intervals we recover correspond to frequentist confidence intervals under correct prior assumptions by analyzing a set of 100 signals drawn from the prior. We discuss the computational cost of these algorithms, and describe the general and problem-specific sampling techniques we have used to improve the efficiency of sampling the compact binary coalescence parameter space.

781 citations


Journal ArticleDOI
Roel J. W. Brienen1, Oliver L. Phillips1, Ted R. Feldpausch1, Ted R. Feldpausch2, Emanuel Gloor1, Timothy R. Baker1, Jon Lloyd3, Jon Lloyd4, Gabriela Lopez-Gonzalez1, Abel Monteagudo-Mendoza, Yadvinder Malhi5, Simon L. Lewis6, Simon L. Lewis1, R. Vásquez Martínez, Miguel Alexiades7, E. Alvarez Dávila, Patricia Alvarez-Loayza8, Ana Andrade9, Luiz E. O. C. Aragão2, Luiz E. O. C. Aragão10, Alejandro Araujo-Murakami11, Eric Arets12, Luzmila Arroyo11, Olaf Bánki13, Christopher Baraloto14, Christopher Baraloto15, Jorcely Barroso16, Damien Bonal15, René G. A. Boot17, José Luís Camargo9, Carolina V. Castilho18, V. Chama, Kuo-Jung Chao1, Kuo-Jung Chao19, Jérôme Chave20, James A. Comiskey21, F. Cornejo Valverde22, L da Costa23, E. A. de Oliveira24, A. Di Fiore25, Terry L. Erwin26, Sophie Fauset1, Mônica Forsthofer24, David W. Galbraith1, E S Grahame1, Nikée Groot1, Bruno Hérault, Niro Higuchi9, E.N. Honorio Coronado1, E.N. Honorio Coronado22, Helen C. Keeling1, Timothy J. Killeen27, William F. Laurance4, Susan G. Laurance4, Juan Carlos Licona, W E Magnussen, Beatriz Schwantes Marimon24, Ben Hur Marimon-Junior24, Casimiro Mendoza28, David A. Neill, Euler Melo Nogueira, Pablo Núñez, N. C. Pallqui Camacho, Alexander Parada11, G. Pardo-Molina, Julie Peacock1, Marielos Peña-Claros12, Georgia Pickavance1, Nigel C. A. Pitman29, Nigel C. A. Pitman8, Lourens Poorter12, Adriana Prieto30, Carlos A. Quesada, Fredy Ramírez30, Hirma Ramírez-Angulo31, Zorayda Restrepo, Anand Roopsind, Agustín Rudas32, Rafael de Paiva Salomão33, Michael P. Schwarz1, Natalino Silva, Javier E. Silva-Espejo, Marcos Silveira16, Juliana Stropp, Joey Talbot1, H. ter Steege34, H. ter Steege35, J Teran-Aguilar, John Terborgh8, Raquel Thomas-Caesar, Marisol Toledo, Mireia Torello-Raventos4, Ricardo Keichi Umetsu24, G. M. F. van der Heijden36, G. M. F. van der Heijden37, G. M. F. van der Heijden38, P. van der Hout, I. C. Guimarães Vieira33, Simone Aparecida Vieira39, Emilio Vilanova31, Vincent A. Vos, Roderick Zagt17 
19 Mar 2015-Nature
TL;DR: It is confirmed that Amazon forests have acted as a long-term net biomass sink, but the observed decline of the Amazon sink diverges markedly from the recent increase in terrestrial carbon uptake at the global scale, and is contrary to expectations based on models
Abstract: Atmospheric carbon dioxide records indicate that the land surface has acted as a strong global carbon sink over recent decades, with a substantial fraction of this sink probably located in the tropics, particularly in the Amazon. Nevertheless, it is unclear how the terrestrial carbon sink will evolve as climate and atmospheric composition continue to change. Here we analyse the historical evolution of the biomass dynamics of the Amazon rainforest over three decades using a distributed network of 321 plots. While this analysis confirms that Amazon forests have acted as a long-term net biomass sink, we find a long-term decreasing trend of carbon accumulation. Rates of net increase in above-ground biomass declined by one-third during the past decade compared to the 1990s. This is a consequence of growth rate increases levelling off recently, while biomass mortality persistently increased throughout, leading to a shortening of carbon residence times. Potential drivers for the mortality increase include greater climate variability, and feedbacks of faster growth on mortality, resulting in shortened tree longevity. The observed decline of the Amazon sink diverges markedly from the recent increase in terrestrial carbon uptake at the global scale, and is contrary to expectations based on models.

767 citations


Journal ArticleDOI
TL;DR: In this paper, the authors suggest ways in which top managers can help themselves learn to avoid crisis through continuous unlearning, and suggest ways to help themselves to learn from crisis situations.
Abstract: Crises force organizations to replace top managers, so top managers should try to avoid crises through continuous unlearning. The authors suggest ways in which top managers can help themselves unlearn.

749 citations


Journal ArticleDOI
TL;DR: In this article, the authors evaluated whether unbiased clustering analysis using dense phenotypic data (phenomapping) could identify phenotypically distinct heart failure with preserved ejection fraction (HFpEF) categories.
Abstract: Background—Heart failure with preserved ejection fraction (HFpEF) is a heterogeneous clinical syndrome in need of improved phenotypic classification. We sought to evaluate whether unbiased clustering analysis using dense phenotypic data (phenomapping) could identify phenotypically distinct HFpEF categories. Methods and Results—We prospectively studied 397 patients with HFpEF and performed detailed clinical, laboratory, ECG, and echocardiographic phenotyping of the study participants. We used several statistical learning algorithms, including unbiased hierarchical cluster analysis of phenotypic data (67 continuous variables) and penalized model-based clustering, to define and characterize mutually exclusive groups making up a novel classification of HFpEF. All phenomapping analyses were performed by investigators blinded to clinical outcomes, and Cox regression was used to demonstrate the clinical validity of phenomapping. The mean age was 65±12 years; 62% were female; 39% were black; and comorbidities wer...

734 citations


Journal ArticleDOI
TL;DR: In this paper, the authors focus on the recent development in mechanical and tribological behavior of self-lubricating metallic nanocomposites reinforced by carbonous nanomaterials such as CNT and graphene.
Abstract: Rapid innovation in nanotechnology in recent years enabled development of advanced metal matrix nanocomposites for structural engineering and functional devices. Carbonous materials, such as graphite, carbon nanotubes (CNT's), and graphene possess unique electrical, mechanical, and thermal properties. Owe to their lubricious nature, these carbonous materials have attracted researchers to synthesize lightweight self-lubricating metal matrix nanocomposites with superior mechanical and tribological properties for several applications in automotive and aerospace industries. This review focuses on the recent development in mechanical and tribological behavior of self-lubricating metallic nanocomposites reinforced by carbonous nanomaterials such as CNT and graphene. The review includes development of self-lubricating nanocomposites, related issues in their processing, their characterization, and investigation of their tribological behavior. The results reveal that adding CNT and graphene to metals decreases both coefficient of friction and wear rate as well as increases the tensile strength. The mechanisms involved for the improved mechanical and tribological behavior is discussed.

673 citations


Journal ArticleDOI
TL;DR: In this article, a novel hybrid electrocatalyst consisting of nitrogen-doped graphene/cobalt-embedded porous carbon polyhedron was prepared through simple pyrolysis of graphene oxide-supported cobalt-based zeolitic imidazolate-frameworks.
Abstract: A novel hybrid electrocatalyst consisting of nitrogen-doped graphene/cobalt-embedded porous carbon polyhedron (N/Co-doped PCP//NRGO) is prepared through simple pyrolysis of graphene oxide-supported cobalt-based zeolitic imidazolate-frameworks. Remarkable features of the porous carbon structure, N/Co-doping effect, introduction of NRGO, and good contact between N/Co-doped PCP and NRGO result in a high catalytic efficiency. The hybrid shows excellent electrocatalytic activities and kinetics for oxygen reduction reaction in basic media, which compares favorably with those of the Pt/C catalyst, together with superior durability, a four-electron pathway, and excellent methanol tolerance. The hybrid also exhibits superior performance for hydrogen evolution reaction, offering a low onset overpotential of 58 mV and a stable current density of 10 mA cm−2 at 229 mV in acid media, as well as good catalytic performance for oxygen evolution reaction (a small overpotential of 1.66 V for 10 mA cm−2 current density). The dual-active-site mechanism originating from synergic effects between N/Co-doped PCP and NRGO is responsible for the excellent performance of the hybrid. This development offers an attractive catalyst material for large-scale fuel cells and water splitting technologies.

673 citations


Journal ArticleDOI
30 Jul 2015-Nature
TL;DR: The crystal structure of a constitutively active form of human rhodopsin bound to a pre-activated form of the mouse visual arrestin is determined by serial femtosecond X-ray laser crystallography and provides a basis for understanding GPCR-mediated arrestin-biased signalling.
Abstract: G-protein-coupled receptors (GPCRs) signal primarily through G proteins or arrestins. Arrestin binding to GPCRs blocks G protein interaction and redirects signalling to numerous G-protein-independent pathways. Here we report the crystal structure of a constitutively active form of human rhodopsin bound to a pre-activated form of the mouse visual arrestin, determined by serial femtosecond X-ray laser crystallography. Together with extensive biochemical and mutagenesis data, the structure reveals an overall architecture of the rhodopsin-arrestin assembly in which rhodopsin uses distinct structural elements, including transmembrane helix 7 and helix 8, to recruit arrestin. Correspondingly, arrestin adopts the pre-activated conformation, with a similar to 20 degrees rotation between the amino and carboxy domains, which opens up a cleft in arrestin to accommodate a short helix formed by the second intracellular loop of rhodopsin. This structure provides a basis for understanding GPCR-mediated arrestin-biased signalling and demonstrates the power of X-ray lasers for advancing the frontiers of structural biology.

Journal ArticleDOI
TL;DR: The PNS sensor exhibits an ultrahigh sensitivity to NO2 in dry air and the sensitivity is dependent on its thickness, and the dependence of sensitivity on the PNS thickness is dictated by the band gap for thinner sheets and by the effective thickness on gas adsorption for thicker sheets.
Abstract: Two-dimensional (2D) layered materials have attracted significant attention for device applications because of their unique structures and outstanding properties. Here, a field-effect transistor (FET) sensor device is fabricated based on 2D phosphorene nanosheets (PNSs). The PNS sensor exhibits an ultrahigh sensitivity to NO2 in dry air and the sensitivity is dependent on its thickness. A maximum response is observed for 4.8-nm-thick PNS, with a sensitivity up to 190% at 20 parts per billion (p.p.b.) at room temperature. First-principles calculations combined with the statistical thermodynamics modelling predict that the adsorption density is ∼10(15) cm(-2) for the 4.8-nm-thick PNS when exposed to 20 p.p.b. NO2 at 300 K. Our sensitivity modelling further suggests that the dependence of sensitivity on the PNS thickness is dictated by the band gap for thinner sheets ( 10 nm).

Journal Article
TL;DR: In this paper, the authors develop a feminist ethics of care that challenges the isolating effects and embodied work conditions of high productivity in compressed time frames, and argue in favor of the slow scholarship movement.
Abstract: The neoliberal university requires high productivity in compressed time frames. Though the neoliberal transformation of the university is well documented, the isolating effects and embodied work conditions of such increasing demands are too rarely discussed. In this article, we develop a feminist ethics of care that challenges these working conditions. Our politics foreground collective action and the contention that good scholarship requires time: to think, write, read, research, analyze, edit, organize, and resist the growing administrative and professional demands that disrupt these crucial processes of intellectual growth and personal freedom. This collectively written article explores alternatives to the fast-paced, metric-oriented neoliberal university through a slow-moving conversation on ways to slow down and claim time for slow scholarship and collective action informed by feminist politics. We examine temporal regimes of the neoliberal university and their embodied effects. We then consider strategies for slowing scholarship with the objective of contributing to the slow scholarship movement. This slowing down represents both a commitment to good scholarship, teaching, and service and a collective feminist ethics of care that challenges the accelerated time and elitism of the neoliberal university. Above all, we argue in favor of the slow scholarship movement and contribute some resistance strategies that foreground collaborative, collective, communal ways forward.

Journal ArticleDOI
TL;DR: The CA-reduced GO (CA-rGO) showed a high C/O ratio (715) that is among the best rGOs prepared with green reducing reagents as discussed by the authors.
Abstract: Preparation of graphene from chemical reduction of graphene oxide (GO) is recognized as one of the most promising methods for large-scale and low-cost production of graphene-based materials This study reports a new, green and efficient reducing agent (caffeic acid/CA) for GO reduction The CA-reduced GO (CA-rGO) shows a high C/O ratio (715) that is among the best rGOs prepared with green reducing reagents Electronic gas sensors and supercapacitors have been fabricated with the CA-rGO and show good performance, which demonstrates the potential of CA-rGO for sensing and energy storage applications

Journal ArticleDOI
Hou-Feng Zheng1, Vincenzo Forgetta1, Yi-Hsiang Hsu2, Yi-Hsiang Hsu3  +171 moreInstitutions (55)
01 Oct 2015-Nature
TL;DR: Evidence is provided that low‐frequency non‐coding variants have large effects on BMD and fracture, thereby providing rationale for whole‐genome sequencing and improved imputation reference panels to study the genetic architecture of complex traits and disease in the general population.
Abstract: The extent to which low-frequency (minor allele frequency (MAF) between 1-5%) and rare (MAF ≤ 1%) variants contribute to complex traits and disease in the general population is mainly unknown. Bone mineral density (BMD) is highly heritable, a major predictor of osteoporotic fractures, and has been previously associated with common genetic variants, as well as rare, population-specific, coding variants. Here we identify novel non-coding genetic variants with large effects on BMD (ntotal = 53,236) and fracture (ntotal = 508,253) in individuals of European ancestry from the general population. Associations for BMD were derived from whole-genome sequencing (n = 2,882 from UK10K (ref. 10); a population-based genome sequencing consortium), whole-exome sequencing (n = 3,549), deep imputation of genotyped samples using a combined UK10K/1000 Genomes reference panel (n = 26,534), and de novo replication genotyping (n = 20,271). We identified a low-frequency non-coding variant near a novel locus, EN1, with an effect size fourfold larger than the mean of previously reported common variants for lumbar spine BMD (rs11692564(T), MAF = 1.6%, replication effect size = +0.20 s.d., Pmeta = 2 × 10(-14)), which was also associated with a decreased risk of fracture (odds ratio = 0.85; P = 2 × 10(-11); ncases = 98,742 and ncontrols = 409,511). Using an En1(cre/flox) mouse model, we observed that conditional loss of En1 results in low bone mass, probably as a consequence of high bone turnover. We also identified a novel low-frequency non-coding variant with large effects on BMD near WNT16 (rs148771817(T), MAF = 1.2%, replication effect size = +0.41 s.d., Pmeta = 1 × 10(-11)). In general, there was an excess of association signals arising from deleterious coding and conserved non-coding variants. These findings provide evidence that low-frequency non-coding variants have large effects on BMD and fracture, thereby providing rationale for whole-genome sequencing and improved imputation reference panels to study the genetic architecture of complex traits and disease in the general population.

Journal ArticleDOI
TL;DR: The significance of adolescent development in shaping body image, the relationship between body image and adolescent weight status, and the consequences of having a negative body image during adolescence are provided.
Abstract: Adolescence represents a pivotal stage in the development of positive or negative body image. Many influences exist during the teen years including transitions (eg, puberty) that affect one's body shape, weight status, and appearance. Weight status exists along a spectrum between being obese (ie, where one's body weight is in the 95th percentile for age and gender) to being underweight. Salient influences on body image include the media, which can target adolescents, and peers who help shape beliefs about the perceived body ideal. Internalization of and pressures to conform to these socially prescribed body ideals help to explain associations between weight status and body image. The concepts of fat talk and weight-related bullying during adolescence greatly contribute to an overemphasis on body weight and appearance as well as the development of negative body perceptions and dissatisfaction surrounding specific body parts. This article provides an overview of the significance of adolescent development in shaping body image, the relationship between body image and adolescent weight status, and the consequences of having a negative body image during adolescence (ie, disordered eating, eating disorders, and dysfunctional exercise). Practical implications for promoting a healthy weight status and positive body image among adolescents will be discussed.

Journal ArticleDOI
TL;DR: In this paper, the authors compute detection rates of coalescing double compact objects (DCOs) in second-generation GW detectors using the latest models for their cosmological evolution, and implement inspiral-merger-ringdown gravitational waveform models in their signal-to-noise ratio calculations.
Abstract: The unprecedented range of second-generation gravitational-wave (GW) observatories calls for refining the predictions of potential sources and detection rates. The coalescence of double compact objects (DCOs)—i.e., neutron star–neutron star (NS–NS), black hole–neutron star (BH–NS), and black hole–black hole (BH–BH) binary systems—is the most promising source of GWs for these detectors. We compute detection rates of coalescing DCOs in second-generation GW detectors using the latest models for their cosmological evolution, and implementing inspiral-merger-ringdown gravitational waveform models in our signal-to-noise ratio calculations. We find that (1) the inclusion of the merger/ringdown portion of the signal does not significantly affect rates for NS–NS and BH–NS systems, but it boosts rates by a factor of ~1.5 for BH–BH systems; (2) in almost all of our models BH–BH systems yield by far the largest rates, followed by NS–NS and BH–NS systems, respectively; and (3) a majority of the detectable BH–BH systems were formed in the early universe in low-metallicity environments. We make predictions for the distributions of detected binaries and discuss what the first GW detections will teach us about the astrophysics underlying binary formation and evolution.

Journal ArticleDOI
TL;DR: In this article, 40 state-of-the-art models (28 salient object detection, 10 fixation prediction, 1 objectness, and 1 baseline) were evaluated over 6 challenging datasets for the purpose of benchmarking salient object detector and segmentation methods.
Abstract: We extensively compare, qualitatively and quantitatively, 40 state-of-the-art models (28 salient object detection, 10 fixation prediction, 1 objectness, and 1 baseline) over 6 challenging datasets for the purpose of benchmarking salient object detection and segmentation methods. From the results obtained so far, our evaluation shows a consistent rapid progress over the last few years in terms of both accuracy and running time. The top contenders in this benchmark significantly outperform the models identified as the best in the previous benchmark conducted just two years ago. We find that the models designed specifically for salient object detection generally work better than models in closely related areas, which in turn provides a precise definition and suggests an appropriate treatment of this problem that distinguishes it from other problems. In particular, we analyze the influences of center bias and scene complexity in model performance, which, along with the hard cases for state-of-the-art models, provide useful hints towards constructing more challenging large scale datasets and better saliency models. Finally, we propose probable solutions for tackling several open problems such as evaluation scores and dataset bias, which also suggest future research directions in the rapidly-growing field of salient object detection.

Journal ArticleDOI
01 May 2015-Small
TL;DR: A novel nanohybrid of SnO(2) nanocrystal (NC)-decorated crumpled MoS( 2) nanosheet and its exciting air-stable property for room temperature sensing of NO(2).
Abstract: The unique properties of MoS(2) nanosheets make them a promising candidate for high-performance room temperature sensing. However, the properties of pristine MoS(2) nanosheets are strongly influenced by the significant adsorption of oxygen in an air environment, which leads to instability of the MoS(2) sensing device, and all sensing results on MoS(2) reported to date were exclusively obtained in an inert atmosphere. This significantly limits the practical sensor application of MoS(2) in an air environment. Herein, a novel nanohybrid of SnO(2) nanocrystal (NC)-decorated crumpled MoS(2) nanosheet (MoS(2)/SnO(2)) and its exciting air-stable property for room temperature sensing of NO(2) are reported. Interestingly, the SnO(2) NCs serve as strong p-type dopants for MoS(2), leading to p-type channels in the MoS(2) nanosheets. The SnO(2) NCs also significantly enhance the stability of MoS(2) nanosheets in dry air. As a result, unlike other MoS(2) sensors operated in an inert gas (e.g. N(2)), the nanohybrids exhibit high sensitivity, excellent selectivity, and repeatability to NO(2) under a practical dry air environment. This work suggests that NC decoration significantly tunes the properties of MoS(2) nanosheets for various applications.

Journal ArticleDOI
TL;DR: In this article, the optimal size of the photovoltaic (PV) generation system, diesel generator and the energy storage system in a stand-alone ship power system that minimizes the investment cost, fuel cost and the CO2 emissions is proposed.

Journal ArticleDOI
TL;DR: In this paper, the authors performed radiation-hydrodynamics simulations of binary neutron-star mergers in numerical relativity on the Japanese ''K'' supercomputer, taking into account neutrino cooling and heating by an updated leakage-plus-transfer scheme.
Abstract: We perform radiation-hydrodynamics simulations of binary neutron-star mergers in numerical relativity on the Japanese ``K'' supercomputer, taking into account neutrino cooling and heating by an updated leakage-plus-transfer scheme for the first time. Neutron stars are modeled by three modern finite-temperature equations of state (EOS) developed by Hempel and his collaborators. We find that the properties of the dynamical ejecta of the merger such as total mass, average electron fraction, and thermal energy depend strongly on the EOS. Only for a soft EOS (the so-called SFHo), the ejecta mass exceeds $0.01{M}_{\ensuremath{\bigodot}}$. In this case, the distribution of the electron fraction of the ejecta becomes broad due to the shock heating during the merger. These properties are well-suited for the production of the solar-like $r$-process abundance. For the other stiff EOS (DD2 and TM1), for which a long-lived massive neutron star is formed after the merger, the ejecta mass is smaller than $0.01{M}_{\ensuremath{\bigodot}}$, although broad electron-fraction distributions are achieved by the positron capture and the neutrino heating.

Journal ArticleDOI
TL;DR: This tutorial review is on plasma-enabled simple yet efficient synthesis of VGs and their properties that lead to emerging energy and environmental applications, ranging from energy storage, energy conversion, sensing, to green corona discharges for pollution control.
Abstract: Graphene nanosheets arranged perpendicularly to the substrate surface, i.e., vertically-oriented graphenes (VGs), have many unique morphological and structural features that can lead to exciting properties. Plasma-enhanced chemical vapor deposition enables the growth of VGs on various substrates using gas, liquid, or solid precursors. Compared with conventional randomly-oriented graphenes, VGs' vertical orientation on the substrate, non-agglomerated morphology, controlled inter-sheet connectivity, as well as sharp and exposed edges make them very promising for a variety of applications. The focus of this tutorial review is on plasma-enabled simple yet efficient synthesis of VGs and their properties that lead to emerging energy and environmental applications, ranging from energy storage, energy conversion, sensing, to green corona discharges for pollution control.

Journal ArticleDOI
TL;DR: Henry et al. as mentioned in this paper measured Lyα/Hα flux ratios of 0.5-5.6, implying that 5%-60% of Lyα photons escape the galaxies.
Abstract: Author(s): Henry, A; Scarlata, C; Martin, CL; Erb, D | Abstract: We report Hubble Space Telescope/Cosmic Origins Spectrograph observations of the Lyα emission and interstellar absorption lines in a sample of 10 star-forming galaxies at z ∼ 0.2. Selected on the basis of high equivalent width optical emission lines, the sample, dubbed "Green Peas," make some of the best analogs for young galaxies in an early universe. We detect Lyα emission in all ten galaxies, and 9/10 show double-peaked line profiles suggestive of low H i column density. We measure Lyα/Hα flux ratios of 0.5-5.6, implying that 5%-60% of Lyα photons escape the galaxies. These data confirm previous findings that low-ionization metal absorption (LIS) lines are weaker when Lyα escape fraction and equivalent width are higher. However, contrary to previously favored interpretations of this trend, increased Lyα output cannot be the result of a varying H i covering: the Lyman absorption lines (Lyβ and higher) show a covering fraction near unity for gas with NH i ≥ 1016 cm-2. Moreover, we detect no correlation between Lyα escape and the outflow velocity of the LIS lines, suggesting that kinematic effects do not explain the range of Lyα/Hα flux ratios in these galaxies. In contrast, we detect a strong anticorrelation between the Lyα escape fraction and the velocity separation of the Lyα emission peaks, driven primarily by the velocity of the blue peak. As this velocity separation is sensitive to H i column density, we conclude that Lyα escape in these Green Peas is likely regulated by the H i column density rather than outflow velocity or H i covering fraction.

Journal ArticleDOI
01 Jan 2015-Small
TL;DR: By increasing the density of exposed active edges, the perpendicularly oriented structure of MoSe2 nanosheets facilitates ion/electrolyte transport at the electrode interface and minimizes the restacking of nanoshes, while the graphene improves the electrical contact between the catalyst and the electrode.
Abstract: By increasing the density of exposed active edges, the perpendicularly oriented structure of MoSe2 nanosheets facilitates ion/electrolyte transport at the electrode interface and minimizes the restacking of nanosheets, while the graphene improves the electrical contact between the catalyst and the electrode. This makes the MoSe2/graphene hybrid perfect as a catalyst in the hydrogen evolution reaction (HER). It shows a greatly improved catalytic activity compared with bare MoSe2 nanosheets.

Journal ArticleDOI
TL;DR: In this paper, a hybrid multi-objective particle swarm optimization (HMOPSO) approach is proposed to minimize the power system cost and improve the system voltage profiles by searching sitting and sizing of storage units under consideration of uncertainties in wind power production.
Abstract: Energy storage systems play a significant role in both distributed power systems and utility power systems Among the many benefits of an energy storage system, the improvement of power system cost and voltage profile can be the salient specifications of storage systems Studies show that improper size and placement of energy storage units leads to undesired power system cost as well as the risk of voltage stability, especially in the case of high renewable energy penetration To solve the problem, a hybrid multi-objective particle swarm optimization (HMOPSO) approach is proposed in the paper to minimize the power system cost and improve the system voltage profiles by searching sitting and sizing of storage units under consideration of uncertainties in wind power production Furthermore, the probability cost analysis is first put forward in this paper The proposed HMOPSO combines multi-objective particle swarm optimization (MOPSO) algorithm with elitist nondominated sorting genetic algorithm (NSGA-II) and probabilistic load flow technique It also incorporates a five-point estimation method (5PEM) for discretizing wind power distribution The IEEE 30-bus system is adopted to perform case studies The simulation results for each case clearly demonstrate the necessity for optimal storage allocation, and the effectiveness of the proposed method

Journal ArticleDOI
TL;DR: In this paper, high-precision timing observations spanning up to nine years for 37 millisecond pulsars monitored with the Green Bank and Arecibo radio telescopes as part of the North American Nanohertz Observatory for Gravitational Waves (NANOGrav) project were presented.
Abstract: We present high-precision timing observations spanning up to nine years for 37 millisecond pulsars monitored with the Green Bank and Arecibo radio telescopes as part of the North American Nanohertz Observatory for Gravitational Waves (NANOGrav) project. We describe the observational and instrumental setups used to collect the data, and methodology applied for calculating pulse times of arrival; these include novel methods for measuring instrumental offsets and characterizing low signal-to-noise ratio timing results. The time of arrival data are fit to a physical timing model for each source, including terms that characterize time-variable dispersion measure and frequency-dependent pulse shape evolution. In conjunction with the timing model fit, we have performed a Bayesian analysis of a parameterized timing noise model for each source, and detect evidence for excess low-frequency, or "red," timing noise in 10 of the pulsars. For 5 of these cases this is likely due to interstellar medium propagation effects rather than intrisic spin variations. Subsequent papers in this series will present further analysis of this data set aimed at detecting or limiting the presence of nanohertz-frequency gravitational wave signals.

Journal ArticleDOI
TL;DR: Recent progress in 3DG-based composites and their applications in energy storage/conversion devices, i.e., supercapacitors, lithium-ion batteries, dye-sensitized solar cells, and fuel cells are reviewed.
Abstract: Three-dimensional (3D) graphene-based composites have drawn increasing attention for energy applications due to their unique structures and properties. By combining the merits of 3D graphene (3DG), e.g., a porous and interconnected network, a high electrical conductivity, a large accessible surface area, and excellent mechanical strength and thermal stability, with the high chemical/electrochemical activities of active materials, 3DG-based composites show great promise as high-performance electrode materials in various energy devices. This article reviews recent progress in 3DG-based composites and their applications in energy storage/conversion devices, i.e., supercapacitors, lithium-ion batteries, dye-sensitized solar cells, and fuel cells.

Journal ArticleDOI
11 May 2015
TL;DR: The mission and plans of the LOSC are reviewed, focusing on the S5 data release, and the LosC web portal now offers documentation, data-location and data-quality queries, tutorials and example code, and more.
Abstract: The LIGO Open Science Center (LOSC) fulfills LIGO's commitment to release, archive, and serve LIGO data in a broadly accessible way to the scientific community and to the public, and to provide the information and tools necessary to understand and use the data. In August 2014, the LOSC published the full dataset from Initial LIGO's "S5" run at design sensitivity, the first such large-scale release and a valuable testbed to explore the use of LIGO data by non-LIGO researchers and by the public, and to help teach gravitational-wave data analysis to students across the world. In addition to serving the S5 data, the LOSC web portal (losc.ligo.org) now offers documentation, data-location and data-quality queries, tutorials and example code, and more. We review the mission and plans of the LOSC, focusing on the S5 data release.

Journal ArticleDOI
A. Aab1, P. Abreu1, Marco Aglietta1, E. J. Ahn1  +487 moreInstitutions (64)
TL;DR: In this article, the authors presented the first hybrid measurement of the average muon number in air showers at ultrahigh energies, initiated by cosmic rays with zenith angles between 62° and 80°.
Abstract: We present the first hybrid measurement of the average muon number in air showers at ultrahigh energies, initiated by cosmic rays with zenith angles between 62° and 80°. The measurement is based on 174 hybrid events recorded simultaneously with the surface detector array and the fluorescence detector of the Pierre Auger Observatory. The muon number for each shower is derived by scaling a simulated reference profile of the lateral muon density distribution at the ground until it fits the data. A 1019eV shower with a zenith angle of 67°, which arrives at the surface detector array at an altitude of 1450 m above sea level, contains on average (2.68±0.04±0.48(sys))×107 muons with energies larger than 0.3 GeV. The logarithmic gain dlnNμ/dlnE of muons with increasing energy between 4×1018eV and 5×1019eV is measured to be (1.029±0.024±0.030(sys)).

Journal ArticleDOI
TL;DR: In this article, an Open Access article distributed in accordance with the terms of the Creative Commons Attribution (CC BY 4.0) license, which permits others to distribute, remix, adapt and build upon this work, for commercial use, provided the original work is properly cited.
Abstract: © Astronomical Society of Australia 2015; published by Cambridge University Press. This is an Open Access article distributed in accordance with the terms of the Creative Commons Attribution (CC BY 4.0) license, which permits others to distribute, remix, adapt and build upon this work, for commercial use, provided the original work is properly cited. See: http://creativecommons.org/licenses/by/4.0/